遗传狮群算法的分布式电源定容选址
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Distributed Power Supply Location with Constant Capacity Based on Genetic Lion Swarm Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    近年来接入配电网的分布式电源容量越来越大,但不合理的分布式电源定容选址方案不利于配电网的优化运行,故针对分布式电源定容选址问题,分析了分布式电源对配电网线路损耗、节点电压和快速电压稳定裕度指数的影响,并建立了相关的目标函数,同时为加强狮群算法跳出局部最优解的能力将遗传算法的交叉、变异环节引入到狮群算法中,最后在标准的IEEE 33节点配电网络的基础上,对所提方法进行验证,结果表明所得的分布式电源定容选址方案能够有效地降低网络线路损耗,提高节点电压和加强配电网的稳定运行,同时表明遗传狮群算法优化算法比原算法有更强的跳出局部最优解的能力,收敛速度也较快。

    Abstract:

    In recent years, the distributed power supply capacity accessing to power distribution is bigger and bigger, but the unreasonable location plan for distributed power supply location with constant capacity is not conducive to the optimization and operation of the distributed power network, as a result, according to power constant volume location problem, this paper analyzes the influence of distributed power supply on the line loss, node voltage and fast voltage stability index (FVSI) of power distribution network, sets up the relevant objective function, meanwhile, introduces the link of crossover and mutation of the genetic algorithm into lion swarm algorithm in order to strengthen the ability of lion swarm algorithm to jump out of local optimal solution, and finally, based on standard IEEE 33 node power distribution network, verifies the proposed method. The results show that the proposed scheme can effectively reduce the line loss of the network, improve the node voltage and enhance the stable operation of the power distribution network, and that the genetic lion swarm algorithm has a stronger ability to jump out of local optimal solution and has a faster convergence rate than the original algorithm.

    参考文献
    相似文献
    引证文献
引用本文

李晓东.遗传狮群算法的分布式电源定容选址[J].重庆工商大学学报(自然科学版),2019,36(6):106-110
LI Xiao-dong. Distributed Power Supply Location with Constant Capacity Based on Genetic Lion Swarm Algorithm[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2019,36(6):106-110

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-11-25
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升