深度玻尔兹曼机在故障诊断中的应用研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Application of Deep Boltzmann Machine in Fault Diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    构建了一个基于深度玻尔兹曼机的故障诊断系统。首先,基于一个滚动轴承故障实验平台,对深度玻尔曼兹机的在滚动轴承故障诊断领域应用进行了深度分析;然后将方案应用于20 kg级的航空涡喷发动机的故障诊断中;通过与BP神经网络和支持向量机故障诊断模型进行对比,实验结果表明:采用深度玻尔兹曼机对机械设备故障进行故障识别,具有更高的准确性和可靠性。

    Abstract:

    Deep learning technology has been increasingly becoming a popular and intelligent tool in the field of mechanical fault identification. This paper presents an application of Deep Boltzmann Machines in fault diagnosis. Firstly, based on a rolling bearing fault test platform, the depth analysis of Deep Boltzmann machine in the field of rolling bearing fault diagnosis was carried out. Then, the scheme was applied to the fault diagnosis of 20 kg turbojet engine. Finally, the accuracy of BPNN and SVM-based models is compared with the proposed method. The experimental results show that the accuracy presented by DBM model is highly reliable and applicable in fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

陈志强**, 邓生财, 陈旭东, 李川.深度玻尔兹曼机在故障诊断中的应用研究[J].重庆工商大学学报(自然科学版),2018,35(4):62-68
CHEN Zhiqiang* , DENG Shengcai , CHEN Xudong  , LI Chuan . Application of Deep Boltzmann Machine in Fault Diagnosis[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2018,35(4):62-68

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-07-02
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升