基于AFSARBF神经网络的电动汽车动力 电池SOC预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


SOC Prediction for Electric Vehicle Battery Based on  AFSARBF Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    传统的电池荷电状态(State of Charge,SOC)估计方法是基于精确的数学模型,它依赖于大量的建模假设和经验参数,故模型预测SOC精度是有限的;为了提高动力电池SOC预测的精度,提出利用人工鱼群算法(Artificial Fish Swarm Algorithm, AFSA)优化径向基神经网络(RBF)对SOC进行预测,解决了RBF网络参数选择的不确定性;仿真实验结果表明:方法能方便、快速、准确地实现对SOC的预测,且具有实际使用价值。

    Abstract:

    According to the principle that traditional battery state of charge (State of Charge, SOC) estimation method is based on precise mathematical model which relies on a lot of modeling assumptions and empirical parameters, therefore, SOC accuracy by the model prediction is limited. In order to improve the prediction accuracy for the battery SOC, Artificial Fish Swarm Algorithm (AFSA) is applied to predicting the SOC by optimizing Radial Basis Function (RBF) neural network, which solve the uncertainty in RBF network parameter choice. The simulation test results show that this method can easily, quickly and accurately achieve SOC prediction and has practical value. 

    参考文献
    相似文献
    引证文献
引用本文

凤志民, 田丽.基于AFSARBF神经网络的电动汽车动力 电池SOC预测[J].重庆工商大学学报(自然科学版),2016,33(5):6-10
FENG Zhimin, TIAN Li. SOC Prediction for Electric Vehicle Battery Based on  AFSARBF Neural Network[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2016,33(5):6-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-10-13
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升