求解丢番图方程〖SX(〗1〖〗x2〖SX)〗+〖SX(〗1〖〗y2〖SX)〗=〖SX(〗1〖〗z2〖SX)〗+〖SX(〗1〖〗w2
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


A Solution to the Diophantus Equation 〖SX(〗1〖〗x2〖SX)〗+〖SX(〗1〖〗y2〖SX)〗=〖SX(〗1〖〗z2〖SX)〗+〖SX(〗1〖〗w2
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    利用高斯二平方和定理求解一个特殊的丢番图方程〖SX(〗1〖〗x2〖SX)〗+〖SX(〗1〖〗y2〖SX)〗=〖SX(〗1〖〗z2〖SX)〗+〖SX(〗1〖〗w2〖SX)〗,将其转化为a2+b2=c2+d2.经讨论得知,a2+b2≡c2+d2≡1,2(mod 4),当(k1-k3)(k1+k3-1)≡(k4+k2)(k4-k2)时,a2+b2≡c2+d2≡1(mod 4);当(k1-k3)(k1+k3-1)≡(k4-k2)(k4+k2-

    Abstract:

    In this article, the sum of two squares and Gauss theorem is used to solve a particular diophantus equation 〖SX(〗1〖〗x2〖SX)〗+〖SX(〗1〖〗y2〖SX)〗=〖SX(〗1〖〗z2〖SX)〗+〖SX(〗1〖〗w2〖SX)〗. 〖SX(〗1〖〗x2〖SX)〗+〖SX(〗1〖〗y2〖SX)〗=〖SX(〗1〖〗z2〖SX)〗+〖SX(〗1〖〗w2〖SX)〗 will be converted to a2+b2=c2+d2. After discussion,a2+b2≡c2+d2≡1,2(mod 4). We say that a2+b2≡c2+d2≡1(mod 4) if and only if (k1-k3)(k1+k3-1)≡(k4+k2)(k4-k2)≡0(mod 4); we say that a2+b2≡c2+d2≡2(mod 4) if and only if (k1-k3)(k1+k3-1)≡(k4-k2)(k4+k2-1)≡0,2(mod 4).

    参考文献
    相似文献
    引证文献
引用本文

王恒丰, 陈星.求解丢番图方程〖SX(〗1〖〗x2〖SX)〗+〖SX(〗1〖〗y2〖SX)〗=〖SX(〗1〖〗z2〖SX)〗+〖SX(〗1〖〗w2[J].重庆工商大学学报(自然科学版),2015,32(11):86-88
WANG Hengfeng, CHEN Xing. A Solution to the Diophantus Equation 〖SX(〗1〖〗x2〖SX)〗+〖SX(〗1〖〗y2〖SX)〗=〖SX(〗1〖〗z2〖SX)〗+〖SX(〗1〖〗w2[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2015,32(11):86-88

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升