Jun. 2009

文章编号: 1672 - 058X(2009)03 - 0219 - 04

The optimality conditions of infinite vector optim ization problem s

XIE Xiao-feng¹, HE Jing², Lai Han³

(1. Chengdu Neusoft Institute of information, Chengdu 611844, China; 2. Yucai Collge, Southwest University, Chongqing 401524, China; 3. College of Computer and Information Science, Chongqing Technology and Business University, Chongqing 400067, China)

Abstract: In paper [1], the author established the optimality conditions for the finite dimensional multiobjective differentiable programming, and got a series of meaningful conclusions In this paper, we expand these conclusions to the infinite vector optimation problems, and the optimality conditions of infinite vector optimation problems are obtained

Key words: infinite dimensional spaces; constraint qualification; necessary optimality condition; sufficient optimality condition; Pare to-optimal solutions; - p seudoconvexity

CIC number: O224 Document code: A

Many results of the optimality conditions for infinite vector optimation problems have already caused the interest of a lot of scholars This paper deals with the infinite vector optimation problems By using the constraint qualification $S \subseteq C(K, x^0)$, the necessary optimality conditions for weak Pareto-optimal solutions are obtained. The sufficient optimality conditions for weak Pareto-optimal solutions are discussed in the case of convexity and - convexity separately.

Prelim inaries

Let X be a B anach space and Y be a locally convex Hausdorff space. Suppose that Y_+ is a positive cone with nonempty interior in Y, Y_+ Y, 0 Y_+ . We may obtain a linear order on Y defined by y y if y - y Y_+ .

But, y < y means y - y int Y_+ . $y \neq y \Leftrightarrow y = y$, $y < y \Leftrightarrow y > y$. Let Y^* denote the topological dual of Y. The dual cone Y_{+}^{*} of Y_{+} is denoted by $Y_{+}^{*} = \{ y^{*} \quad Y^{*}: y, y^{*} \quad 0, \forall y \quad Y_{+} \}$, where y, y^{*} denotes the value of the continuous linear functional y at the point y. In this paper, consider the infinite vector optimation problems: $\min f(x)$

$$s t - g(x) Z_+, h(x) = 0$$
 (VP)

where f: X = Y, g: X = Z, and h: X = W are all differentiable functions in the sense of Frechet (or simply Fdifferentiable). Let Y have a positive cone with nonempty topological interior let Z, W be B anach spaces with positive cones Z_+ and W_+ with nonempty topological interiors respectively, and W_+ be a point cone

Let $K = \{x \mid X : g(x) = 0\}$, where K is a feasible set of the problem (VP).

收稿日期: 2009 - 01 - 15;修回日期: 2009 - 03 - 02

作者简介:谢小凤(1981-),女,重庆人,硕士研究生,从事最优化理论及应用研究.

Definition 1 We say that $x^0 = K$ is a Pareto-optimal solution of the problem (VP), if there exists no x = K, $x = x^0$ such that $f(x) = f(x^0)$.

Definition 2 We say that $x^0 - K$ is a weak Pareto-optimal solution of the problem (VP), if there does not exist x - K such that $f(x) - f(x^0)$.

Lemma 1 (alternative theorem, see [2]) Let D be a nonempty set and Y be an ordered linear topological space with a positive cone Y_+ with nonempty interior. If F:D Y is a subconvexlike mapping, then either (i) or (ii) holds:

- () there is x^0 D such that $F(x^0) < 0$;
- () there is $y^* Y_+^*$ such that $y^* 0$ and $F(x), y^* 0, \forall x D$.

The two alternatives () and () exclude each other

2 Necessary optimality conditions

Definition 3 Let V be a locally convex Hausdorff space, $U \subseteq V$. The vector d V is called a convergence vector for U at u_0 U, if and only if there exists a sequence $\{u_n\}$ in U and a sequence $\{a_n\}$ of a positive real numbers such that:

$$\lim_{n} u_n = u_0$$
, $\lim_{n} a_n = 0$, $\lim_{n} \frac{u_n - u_0}{a_n} = d$

Lemma 2 (see [6]) Suppose that $x^0 - K$ is a weak Pareto-optimal solution of the problem (VP), then no convergence vector for f(K) at $f(x^0)$ is strictly negative

Let $C(K, x^0)$ be the set of all convergence vectors for K at x^0 , and let $S = \{x \mid X : g(x^0) \mid x \mid 0, h(x^0) \mid x = 0\}$. We say that g and h satisfy a constraint qualification at x^0 if $S \subseteq C(K, x^0)$.

Theorem 1 Suppose that:

- (i) x^0 K is a weak Pareto-optimal solution of (VP);
- (ii) f, g and h are F differentiable at x^0 ;
- (iii) g and h satisfy the constraint qualification at x^0 .

then, there exist y_0^* Y_+^* , y_0^* 0, z_0^* Z_+^* , w_0^* W_-^* , such that

$$y_0^* f(x^0) + z_0^* g(x^0) + w_0^* h(x^0) = 0$$

 $g(x^0) = 0, h(x^0) = 0$

Proof Let x^0 be a weak Pareto-optimal solution of (VP). Then x^0 K and hence $g(x^0) = 0$, $h(x^0) = 0$.

(i) Let $d \in C(K, x^0)$. Then, there exists a sequence $\{x_n\} \subset K$ and a sequence $\{a_n\}$ of a positive real numbers such that

$$x_n = x^0, a_n = 0, \frac{x_n - x^0}{a_n} = d$$

Due to f is F - differentiable at x^0 , we have:

$$f(x_n) = f(x^0) + f(x^0)(x_n - x^0) + (x_n - x^0), i e, \frac{f(x_n) - f(x^0)}{a_n} = f(x^0) \frac{x_n - x^0}{a_n} + \frac{(x_n - x^0)}{x_n - x^0} \cdot \frac{x_n - x^0}{a_n}$$

where
$$o(x_n - x^0) / ||x_n - x^0|| = 0$$
 (n). Therefore, $\frac{f(x_n) - f(x^0)}{a_n} = f(x^0) d$.

By the continuity of f, $f(x_n) - f(x^0)$. It means that $f(x^0) d$ is a convergence vector of f(K) at $f(x^0)$. By lemma 2, $f(x^0) d$ 0, Note that W have a positive cone W_+ with nonempty topological interior, and W_+ is a point cone. Hence, for any d $C(K, x^0)$, the system of $f(x^0) d < 0$, $g(x^0) d = 0$, $g(x^0)$

() Let $d \in X$, $d \notin C(K, x^0)$, then $d \notin S$. That is, for any $d \notin C(K, x^0)$, the system $g(x^0)d = 0$, $-h(x^0)$

 $d=0, h=(x^0)d=0$ is inconsistent. Hence, for any $d \notin C(K, x^0)$, the system $f=(x^0)d<0$, $g=(x^0)d=0$, $-h=(x^0)d=0$, $h=(x^0)d=0$ is inconsistent.

Let
$$F(x) = (f(x^0) x, g(x^0) x, -h(x^0) x, h(x^0) x), x X.$$

We note that Y_+ , Z_+ , W_+ have nonempty topological interiors. Hence, there exists no d = X, such that $F(d) = (f(x^0)d, g(x^0)d, -h(x^0)d, h(x^0)d) < 0$.

While changing into the -d, $y_0^* f(x^0) d + z^* g(x^0) d - u_0^* h(x^0) d + v_0^* h(x^0) d = 0$.

Hence, we get $y_0^* f(x^0) d + z^* g(x^0) d - u_0^* h(x^0) d + v_0^* h(x^0) d = 0$.

Let $w_0^* = v_0^* - u_0^* - W^*$. We get

$$\dot{y_0} f(x^0) d + \dot{z} g(x^0) d + w_0 h(x^0) d = 0, \qquad \forall d X$$
 (1)

From (1), we obtain:

$$y_0^* f(x^0) + z_0^* g(x^0) + w_0^* h(x^0) = 0$$

3 Sufficient optimality conditions

Corollary 1 The conclusions of Theorem 1 hold with hypothesis () and () as above, but hypothesis () replaced by () $S_h = \{x \mid X: h(x^0) \mid x=0\} \subseteq C(K, x^0)$.

Since $S \subseteq S_h$, the corollary establishs obviously.

Theorem 2 Suppose that:

- () f, g and h are F differentiable at x^0 ;
- () f and g are convex, h is convex and concave;
- () there exist y_0^* Y_+^* , y_0^* 0, z_0^* Z_+^* , w_0^* W_-^* , such that:

(a)
$$y_0^* f(x^0) x + z_0^* g(x^0) x + w_0^* h(x^0) x = 0, \forall x = S;$$

- (b) $g(x^0) = 0$;
- (c) $h(x^0) = 0$.

Then, x^0 is a weak Pareto-optimal solution of (VP).

Proof If x^0 is not a weak Pareto-optimal solution of (VP), then, there exists x^* K such that $f(x^*) < f(x^0)$. Hence, by assumptions (x^0) , (x^0) , (x^0) , (x^0) , (x^0) , (x^0) , (x^0) , we have:

$$f(x^{0})(x^{*}-x^{0}) \quad f(x^{*}) - f(x^{0}) < 0$$

$$g(x^{0})(x^{*}-x^{0}) \quad g(x^{*}) - g(x^{0}) \quad 0$$

$$h(x^{0})(x^{*}-x^{0}) = h(x^{*}) - h(x^{0}) = 0$$

It follows that $\exists x^* - x^0 - S$, such that $f(x^0)(x^* - x^0) < 0$. For $f(x^0)$ using on S in Lemma 1, by this time the assumption (ii) of Lemma 1 does not hold for $y_0^* - Y_+^*$, $y_0^* = 0$. Therefore, we have x = S such that:

$$y_0^* f(x^0) x < 0$$
 (2)

Using x S, we obtain $g(x^0)x = 0$, $h(x^0)x = 0$. Since $z_0^* Z_0^*$ and $w_0^* = W_0^*$, therefore:

$$z_0^* g(x^0) x = 0, w_0^* h(x^0) x = 0$$
 (3)

By (2) and (3), we get $y_0^* f(x^0) x + z_0^* g(x^0) x + w_0^* h(x^0) x < 0$, which contradicts () (a). Consequently, x^0 is a weak Pareto-optimal solution of (VP).

In the next theorem, we replace the convexity of f, g and h by the - p seudoconvexity of a suitable linear combination of the components of f, g and h

Defitination 4 Let : X Y is F - differentiable at x^0 on X. The mapping is said to be - convexity at x^0 , if

 $\exists : X \times X \quad X \text{ such that:}$

$$(x) - (x^{0}) - (x^{0}) - (x^{0}) + (x^{0})$$

The mapping is said to be - p seudoconvexity at x^0 , if (x^0) (x, x^0) $0 \Rightarrow (x)$ (x^0) , $\forall x \in X$.

Theorem 3 Suppose that:

- () f, g and h are F differentiable at x^0 ;
- () there exist y_0^* Y_+^* , y_0^* 0, z_0^* Z_+^* , w_0^* W_-^* , such that:

(a)
$$[y_0^* f(x^0) + z_0^* g(x^0) + w_0^* h(x^0)]$$
 (x, x^0) 0, $\forall x \in K$;

- (b) $g(x^0) = 0$;
- (c) $h(x^0) = 0$.
- () $y_0^* f(x) + z_0^* g(x) + w_0^* h(x)$ is p seudoconvexity at x^0 .

Then, x^0 is a weak Pareto-optimal solution of (VP).

Proof If x^0 is not a weak Pareto-optimal solution of (VP), there exists x^* K such that $f(x^*) - f(x^0) < 0$. Since x^* K, by assumptions (ii) (b) and (ii) (c), therefore, we conclude that

$$g(x^{*}) - g(x^{0}) = 0, h(x^{*}) - h(x^{0}) = 0$$

$$y_{0}^{*} f(x^{*}) + z_{0}^{*} g(x^{*}) + w_{0}^{*} h(x^{*}) < y_{0}^{*} f(x^{0}) + z_{0}^{*} g(x^{0}) + w_{0}^{*} h(x^{0})$$

$$\text{If } [y_{0}^{*} f(x^{0}) + z_{0}^{*} g(x^{0}) + w_{0}^{*} h(x^{0})]_{x=x^{0}} (x^{*}, x^{0}) = [y_{0}^{*} of(x^{0}) + z_{0}^{*} og(x^{0}) + w_{0}^{*} oh(x^{0})] (x^{*}, x^{0}) = 0$$

$$(4)$$

By definition of - p seudoconvexity, we have:

$$y_0^* f(x^*) + z_0^* g(x^*) + w_0^* h(x^*) \quad y_0^* f(x^0) + z_0^* g(x^0) + w_0^* h(x^0)$$

which contradicts (4). Therefore, we obtain:

$$[y_0^* f(x^0) + z_0^* g(x^0) + w_0^* h(x^0)] (x, x^0) < 0, \forall x \in K$$

but this violates hypothesis (ii) (a). Hence x^0 is a weak Pareto-optimal solution of (VP).

References:

- [1] SNGH C. Optimality Conditions in Multiobjective Differentiable Programming [J]. Optimization Theory Appl., 1987, 53 (1): 115-123
- [2] LIZM. On Optimality Conditions in Semi-infinite Vector Optimization Problems [J]. Sys Sci &Math Scis, 1994, 14 (4): 375-380
- [3] L I ZM. The Optimality Conditions for Vector Optimization of Set-Valued Maps [J]. Journal of Mathematical Analysis and Applications, 1999, 237: 413-424
- [4] L I ZM. The Optimality Conditions of Differentiable Vector Optimization Problems [J]. Journal of Mathematical Analysis and Applications, 1996, 201: 35-43

无穷维向量最优化问题的最优性条件

谢小凤1,何 静2,赖 涵3

(1. 成都东软信息技术职业学院,成都 611844; 2 西南大学育才学院,重庆 401524; 3. 重庆工商大学 计算机与信息科学学院,重庆 400067)

责任编辑:李翠薇