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Abstract: In thispgper, a numerical model for an unsaturated il water flov equation is established by the fi-
nite volume eleanent(FV E) methods The numerical method has been verified and compared by the numerical ex-
anples Satisfactory reaults and some other significant and valuable conclusions are obtained
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The flow of unsaturated il water, which isa flov as the il holes are not full of water, isan mportant fom
of flowv in porousmedia The prediction for the unsaturated flov isof significance in many branchesof science and
engineering including amogheric science, il science, agricultural engineering, envirormental engineering and
groundwvater hydrology, and ©0 on Soil water density isa crucial clmate factor, and its sesa®nal change casts m-
portant influence on weather and climate in mid-high latitude region Land surface parameterization which stresses
on computation of il moisture density has been widely concemed 2. All hydraulic processes at surface and sub-
aurface of the earth, such asprecipitation, evgporation and evgpotrangiration, seepage of surface water, cgpillary
elevation of deep-level water, absption in root zone and liquid moisture flov of groundwvater, and o forth, can all
be reduced o unsaturated flow problem. Since the problam is described by a nonlinear equation, it is mpossible ©
obtain its analytical slution except for gecial cases Therefore, numerical app roximations® ! are typically used o
lve the unsaturated flov equation The finite elenentmethods and the finite dierence methods for the unsaturated
flov equation have been studied by several authors™®. However, © the finite dierence methods, the changes of
boundary condition and il parameters easily cast goparent influence on error estimates, and the finite element
methods require fairly more computational expenses, 9 it isnot convenient © goply tham t numerical smulation in
the actual land surface model

In the paper, a numerical model for an unsaturated il water flov equation is established by the finite volume
elanent methods” , and some numerical examples is given

1 Sani-disrete finite volume elanent schanes

Based on the horizontal resolution of the general amosphere circulation model (usually 1° © 5° longitude-lati-
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tudes reslution) , if the liquid moisture flow in il along horizontal direction may be ignored, it can be reduced o
a one-dimensional unsaturated il flov (problem (1)). Let z denote the vertical dimension, assming positive
dowvrward, and Q (z t) be il wlumetric moisture density at time t and distance z from the surface Suppose that
infiltration or evgporation rate at the surface is dependent on time and to be given, positive is for infiltration and
negative is for evgporation Let| = (0,L), and moisture density at the bottom of the damain | be given , independ-
ent of distance Then, byDarcy lav and the continuousprinciple, the Richards equation of unsaturated flow can be
described as (see [3-6] for detail) :

%-%D(Q)%+i§l=$, Lt (0T

Q(z0) =Q, (2, z |
@ \,
az(L’ ) =0, t (0, 7T

(1)

Q) =Q. (), t (0T

where Q is the il moisture density, - S, the aboiption rate of root zone, K(Q) the unsaturated hydraulic conduc-
tivity, D (Q) the il water diffusivity, Q, (2 the given moisture density at upper boundary z=0, and Q, (2) the
given initial condition The relationships betveen the hydraulic conductivity K(Q) , the il water diffusivity D (Q)

and Q are asfollows
2b+3
KQ) = K{Q

(2)
b b+2
D(@Q) =- Kw{gj Q= Q(Zz 1) < Q

Qs
where Q, is the residual moisture density, Q. the saturated moisture density and 0 <Q, <1, K the saturated hydrau-
lic conductivity, b the il paraneter andW , defining change in il water, all degpendent on il Obviousdly, K

(Q),iéfl,D(Q) ang-2AQ)

are bounded from above and below, i e , there exist wo constants K; and K, ,

@®
uch that
K < K(Q) < ﬁ—'%%%f%qu%?l < K (3)

In order o trandfom the boundary conditions into homogeneous fom, letQ (z t) = Q(z t). Q, (1), then
problems (1) can bewritten as follovs
X Lo LK@ ()
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Q0,1 = O,%;(L, ) =0, t (0,7 (4)

Q(z0) =Q (2 -Q. (0, z |

LetL? (1) denote the L ebeggue’ s pace of gquare integrable function on | and H, (1) a Sobolev pace, up ©
the first derivatives of which are square integrableon L SetHg (1) ={v H' (I); v(0) =0}, (- ,- ) repre
ents theL® - inner producton I, i e :

(u, v) = Jl-,l(z) v(dz Yu v L*())
Let sdefine, foranyw H'(I) andu, v Hg (1), a bilinear fom:
. _ _ou_ov
D(w; uv) = '.P(W) e azdz (5)
The variational fomulation for problen (4) can be written:

FindQ(z t): [0, T] =Hg (1), Vt (0, T), such that
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aQ . _ K (Q) a?l(t) 1
[at,}+D(Q.Q,V) —[s,- 5% o } Vv  Hg (D)

Q(z0) =Q (2 - (0), 0= z= L

It can be proved that (6) has a unique generalized lution Q.

In order to find the numerical slution for problem (1) or (4), it isnecessary to discretize problem (6). We
|

(6)

first discretize spatial varigble S, ={; | =[z.1,3],i=1 , 1}, 1= _ I, and S ={I:l =[z1,22],i
=1, ,I-1,1 =[z.1,3]} denote the primal partition and its dual partition, repectively Leth =z - z.,, h
=max{ h; 1< i< I}. The partitions are asamed o be regular, that is, there existsa constantd >0 independent of
h such that h=p h, i=1,2, , | The trial function aceU, = pan{®,, ,@,} CHz (1) n C(1) isdefined asa
piecavise linear function ace over S,, here basic function®; (2 defined by:
Z- 72, . I
h ;
Qi (2 =\ 2 - 7 i=1 -1
T, z b1,
0, z I/ lis1,
221 z |
0, (2 = h
0, z /1,

|
Any u, U, can be expresed by u, (2) = Z:uspi (,z |, whereu =u, (7).
i=1
The test function pace v, = pan @,, .9;) CL” (2) isdefined asa piecavise constant function pace over
S, , here basic functionl; (2) defined by:
1, z Ii*

Y. (2 = ) i=1 ,1-1
o, z I/,

1, z I.*
v, (2 :{ .
0, =z 11

|
Any v, V, can be expresed by v, (20 = Z\,,ilJi(z),z I, wherev =y, (z).
i=1
Obvioudly, dim U, =dmv, =1
Let sdefine, for Vw H' (1), u He (1) andvy, V,, a bilinear fom:

|
D' (W u %) = DD (w; uW)) (7)
=1
. u-u. U,q - U
whereD " (w; u,y,) :D""%_J_hj]_l - D,-+-;—‘hlj+—l‘uj =u(z), v=%+(z),D;.2 =D (w(z.2,1),D;2 =0

W e next introduce the generalized Ritz projection operabr R, =R, (1) : Hz (1) -U,, 0< t< T defined by, for
u He(1):
D' (Qu-Rouw) =0 Vy V, (8)
whereQ =Q +Q,, Q is the generalized lution of (6).
Then, the sami - discrete VM gpproximation schane of (4) isto find ama Q, (t): [0, T] -U, such that

Qm * . - aK (Qh ) a-\)l ( t)
[ar@ +D" (Qn; Qn, W) [3- Pl ,J, Vv V.

Q. (z0) =R Q (2 -Q, (0, z |

(9)
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2 Fully discrete finite volume elanent schanesand numer ical examples

LetN be an integer, T =T/N be the step length of time, t, =@ (0< n< N), andQ, U, be the generalized

dierence approximation ©Q (t,) = Q", then the fully discrete FVM gpproximation scheme of (4) ist sedQp ' '<
U, (0 n< N - 1), such that

@™, %) +TD° (Qn Q™ w) :r[ g K@) agl(t‘”),vJ £ QW) VvV,

oz ot (10)

Q=R Q(2 -Q.(0), 0<z<L

In this section, same numerical examplesof the unsaturated il water flov are given W ithout lose of generali-

ty, we just take S, =0 aswell , and leth,= h =—L|

In the land surface and amogpheric circulation model, global il are typically classified and the typesof il
paraneters are assigned A ccording to Dickin®n et al’ sBATSmodel documentation, the parameters for the tvelve
typesof ils are listed in table 1

Tablel Soil parametersof 12 types of ils

Sil type/ Parameters Q.  -W./(mm) K./ (mms ) b Q. /Q,
1 Q33 30 Q 2000 35 Q 088
2 Q36 30 Q 0800 40 Q 119
3 Q39 30 Q 0320 45 Q 151
4 Q 42 200 Q 0130 50 Q 266
5 Q45 200 89x10° 55 Q 300
6 Q 48 200 63x10° 60 Q 332
7 Q 51 200 45x%x10° 6 8 Q 378
8 Q 54 200 32x10° 76 Q 419
9 Q 57 200 22x10° 84 Q 455
10 Q 60 200 16x10° Q2 Q 487
1 Q 63 200 11x10°° 100 Q 516
12 Q 66 200 08x10° 108 Q 542

The il paranetersof the sixth type of il in table 1 are used as examplesof the numerical smulation of the
finite volume elenent lution for the infiltration and evaporation

The il parametersof the sixth type of Dil: Q, =0 48, Y, = - 200mm, K, =6 3x10 ° (mm/s), b=6 0,
Q. /Q, =0 332 TakingL =200 an, the time step lengthT =0 2h, the atial step size h =1am, divide the do-
main_l =[0, 200] into 200 equal - length elanents A saming that the surface water flux exceeds the infiltration
intensity and runo is generated for ssme time , a saturated moisture density Q, (t) = Q 48 ismaintained at the il
aurface (z=0) during the 20h since the beginning of process And asaming that after 20h , evgporation begins,
the moisture density at il surface rgpidly reaches the air - dried moisture density rate and il at surface keeps the
air - dried rate in time interval (26h, 40h], then , the initial and boundary conditions for infiltration and evaporar

tion of water in the il are
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10 - 7
0(20) = 048 x0332+042 x(1-0 332 x 10 .z [0,10]
048 x0 332,z [10,200]
048, 0 < t< 20h
Q0 ) =X 048 +048 x (1 0- 0 332) ><206' t,20h<ts 26h

0 48 xQ 332,26h < t< 40h
When S, =0, gplying the above data, we can obtain the sixth il moisture density profilesfran 0 © 25 5 h
which are shown in fig 1. Fig 1 shows that the moisture density close o surface increases rpidly since infiltration
occurred and is gradually close o the saturated il moisture From fig 1, we can know thatwhen evaporation oc-
curs, the il moisture density decreases rgpidly with the increase of tme But because of gravity, the moisture
density closee © the lower of the column will go on © increase After evaporation occuring for certain time, the
curves of il moisturewill change more and more gently.
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Fig 1 The sixth il moisture density profile
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3 Conclusion

From the above analysis, we can find that the reaults of numerical smulation coincide with the actual situar
tion Moreover, the finite volune elanent schames in thispaper are stable and practical Therefore, it is reliable
®lve unsaturated il moisture density by the schemes in thispgoer, and we may goply then o numerically smu-

late more camplex physical processes of unsaturated il water infiltration and evgporation
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