一种机械臂像素级抓取检测方法的研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on Pixel-level Grasping Detection Method of Robot Arm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 针对在平面抓取的场景下,机械臂如何感知目标物体的位置信息并完成抓取作业,提出了一种兼顾检 测速度和精度的抓取检测网络。 方法 根据抓取检测任务中输入与输出尺寸大小相同的特点,采用语义分割思想设 计了抓取检测网络;输入为随机裁剪后的深度图片,输出为同尺寸的抓取置信度、抓取角度和抓取宽度特征图;为 了提高平面抓取任务的效率,在综合考虑检测网络速度和精度的情况下,对网络结构进行了改进,除了在网络结构 中加入了注意力机制外,还使用 U-net 和 Deeplabv3 算法替换了网络的主体结构;通过对比实验认为加入注意力机 制的检测网络在检测速度和检测精度上平衡得较好,能够实现抓取任务,将抓取位姿传输给 ROS 系统,通过一系 列的坐标变换和运动规划进行了抓取作业。 结果 添加注意力机制后,检测网络的推理时间仍为毫秒级,最大抓取 置信度提高了 7. 2%;采用 U-net 和 Deeplabv3 的网络检测速度较慢,U-net 网络的抓取置信度 ??Qmax 提高了 18. 8%, Deeplabv3 网络的准确率 Acc 提高了 12. 8%;由于抓取检测网络应同时考虑检测速度和精度,因此加入注意力机制 的检测网络性能较优。 结论 实验结果表明:添加注意力机制后的抓取网络在检测速度与精度上兼顾的比较理想, 能够成功抓取场景中的目标物体,此方法具有一定的实际应用价值

    Abstract:

    Objective A grasping detection network that balances detection speed and detection accuracy was proposed for how a robotic arm can sense the position information of a target object and complete a grasping operation in a planar grasping scenario. Methods Based on the feature that the input size and the output size are the same in the grasp detection task a grasp detection network was designed using semantic segmentation ideas. The input was a randomly cropped depth image and the output was images of the same size containing features like grasp confidence grasp angle and grasp width. To improve the efficiency of the planar grasping task the network structure was improved by replacing the backbone structure of the network using the U-net and Deeplabv3 algorithms in addition to adding an attention mechanism to the network structure taking into account the speed and accuracy of the detection network. Comparative experiments concluded that the detection network with the attention mechanism has a better balance of detection speed and detection accuracy and can achieve the grasping task transmitting the grasping poses to the ROS system and performing the grasping operation through a series of coordinate transformations and motion planning. Results After adding the attention mechanism the inference time of the detection network was still in the millisecond range and the maximum grasping confidence was improved by 7. 2%. The detection speed of the networks using U-net and Deeplabv3 was slower the grasping confidence ??Qmax of the U-net network was improved by 18. 8% and the accuracy Acc of the Deeplabv3 network was improved by 12. 8%. Since the grasp detection network should consider both detection speed and accuracy the detection network with the addition of the attention mechanism has better performance. Conclusion The experimental results show that the grasping network with the attention mechanism has a better balance of detection speed and accuracy and can successfully grasp the target objects in the scene and the method has some practical application value.

    参考文献
    相似文献
    引证文献
引用本文

何联格 , 聂远航 , 李天华 , 妥吉英.一种机械臂像素级抓取检测方法的研究[J].重庆工商大学学报(自然科学版),2024,(2):18-25
HE Liange, NIE Yuanhang, LI Tianhua, TUO Jiying . Research on Pixel-level Grasping Detection Method of Robot Arm[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2024,(2):18-25

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-05
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升