基于多时间尺度锂电池在线参数辨识及 SOC 和 SOH 估计
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


On-line Parameter Identification and SOC and SOH Estimation of Lithium Battery Based on Multi-time Scale
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    电池的荷电状态和健康状态是衡量电池续航和寿命的重要指标,为解决电池参数的时变性问题,提高电池 SOC(State of Charge)估算精度,减少硬件计算量,提出一种多时间尺度在线参数辨识双扩展卡尔曼滤波联合算法。 以 18650 三元锂电池为研究对象,采用基于二阶 RC 等效电路模型的多时间尺度 DEKF 算法,针对电池参数的慢变 特性和状态的快变特性进行双时间尺度在线参数辨识和 SOC 估算;通过联邦城市驾驶计划 (FUDS) 测试验证,得 出多时间尺度 DEKF 算法和传统离线辨识 EKF 算法对 SOC 估计的平均绝对误差分别为 0. 97%和 2. 46%,均方根 误差为 1. 19%和 2. 69%,容量估计值对参考值最大误差仅为 0. 007 72 Ah;实验结果表明:所提出的多时间尺度 DEKF 算法,具有更好的鲁棒性和 SOC 估算精度并能实时反应 SOH 变化趋势。

    Abstract:

    The state of charge SOC and state of health SOH of a battery are important indicators of battery endurance and lifetime. In order to solve the problem of time-varying battery parameters improve the accuracy of SOC estimation and reduce the hardware computation a joint multi-timescale online parameter identification algorithm with a doubleextended Kalman filter was proposed. The multi-timescale DEKF algorithm based on the second-order RC equivalent circuit model was used for the online parameter identification and SOC estimation of the 18 650 ternary lithium battery with the slow-varying characteristics of the battery parameters and the fast-varying characteristics of the battery state. Through the test verification of the Federal Urban Driving Program FUDS the average absolute errors of the SOC estimation of the multi-time scale DEKF algorithm and the traditional offline identification EKF algorithm were 0. 97% and 2. 46% respectively the rms errors were 1. 19% and 2. 69% and the maximum error of the capacity estimation to the reference value was only 0. 007 72 Ah. The experimental results show that the proposed time-scale DEKF algorithm has better robustness and SOC estimation accuracy and can respond to the SOH variation trend in real time.

    参考文献
    相似文献
    引证文献
引用本文

姚昌兴,李 昕,邢丽坤.基于多时间尺度锂电池在线参数辨识及 SOC 和 SOH 估计[J].重庆工商大学学报(自然科学版),2023,40(5):48-54
YAO Changxing, LI Xing, XING Likun. On-line Parameter Identification and SOC and SOH Estimation of Lithium Battery Based on Multi-time Scale[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2023,40(5):48-54

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-19
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升