基于因子分析的因果推断研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on Causal Inference Based on Factor Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对反事实框架下的因果推断问题,在因子分析视角下,从优化角度提出利用 L2 因子分析方法估计反事实值,并引入 L1 损失函数优化 L1 风险;结合因果推断与正交因子模型,将面板数据中需要估计的反事实值视作缺失值,从而把因果推断反事实值估计转变为带有缺失值的潜在因子模型估计;舍弃面板数据中的缺失值,通过优化一步得到潜在结果与平均处理效应,避免了信息丢失问题;采用 L1 因子分析代替 L2因子分析来估计模型,做出稳健性上的改进,并获得中位数处理效应;介绍了一种交替凸优化算法解决 L1 、L2 因子分析中的目标函数最小化问题,并给出其具体实现步骤;对于加利福尼亚州限制烟草政策案例做了实证研究,将 L1 、L2 因子分析与已有因果推断方法进行比较分析,结果表明:因子模型的 L1 、L2 估计量同样适用于宏观经济变量预测;最后通过设置伪实验组与伪介入的假设,验证了 L1 因子分析较其他方法具有更稳健的预测效果。

    Abstract:

    According to the causal inference problem under the counter-factual framework an L2 factor analysis method from the perspective of factor analysis and optimization is proposed to estimate counter-factual value and L1 loss function is introduced to optimize L1 risk. Combining causal inference with orthogonal factor model the counter-factual value which is supposed to estimate is regarded as missing value transforming the counter-factual value estimation of causal inference into latent factor model estimation with missing value. Discarding the missing value in the panel data the latent results and mean treatment effect are derived directly by optimization and therefore avoid the loss of information using L1 factor analysis instead of L2 factor analysis to estimate the model making robustness improvements and obtaining the median treatment effect. Alternate convex programming is introduced to minimize the objective function in the L1 and L2 factor analysis and its implementation steps are given. Empirical study based on the case of tobacco policy in California is made to compare L1 L2 factor analysis and other causal inference methods. The results show that the L1 and L2 factor estimator is also applicable to the prediction of macroeconomic variables. Finally by setting up pseudo-treat unit assumption and pseudo-time assumption respectively it has been verified that L1 has more robust prediction effect than other methods.

    参考文献
    相似文献
    引证文献
引用本文

付举望, 孔新兵.基于因子分析的因果推断研究[J].重庆工商大学学报(自然科学版),2022,39(6):71-78
FU Ju-wang, KONG Xin-bing. Research on Causal Inference Based on Factor Analysis[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2022,39(6):71-78

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-26
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升