基于侦察学习策略的粒子群算法优化
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Particle Swarm Optimization Based on Scout Learning Strategy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对粒子群算法收敛能力不足和易陷入局部最优的问题,提出了一种基于侦察学习策略的新型粒子群算法。 算法首先利用拓扑结构构建粒子种群,其次采用联合因子均衡算法的局部搜索能力和全局搜索能力,并通过侦察学习策略改进算法的速度和位置公式进而产生候选解;Wilcoxon 秩和检验结果和CEC2017 基准函数检测结果表明,新型粒子群算法的收敛能力,最优解精度以及算法稳定性更好,说明算法性能得以提升。

    Abstract:

    Aiming at the problem of insufficient convergence ability of particle swarm optimization and easy to fall into local optimum, a novel particle swarm optimization based on scout learning strategy is proposed. The algorithm first uses the topology structure to construct the particle population, and then uses the local search ability and global search ability of the joint factor equalization algorithm, and improves the speed and position formula of the algorithm through the scout learning strategy to generate candidate solutions. The results of Wilcoxon rank sum test and CEC2017 benchmark function test show that this novel particle swarm algorithm has better convergence ability, optimal solution precision and algorithm stability, indicating that the performance of the algorithm has been improved.

    参考文献
    相似文献
    引证文献
引用本文

张 倩 , 刘衍民 , 杨妹兰 , 舒小丽.基于侦察学习策略的粒子群算法优化[J].重庆工商大学学报(自然科学版),2022,39(5):34-41
ZHANG Qian, LIU Yan-min, YANG Mei-lan, SHU Xiao-li. Particle Swarm Optimization Based on Scout Learning Strategy[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2022,39(5):34-41

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-27
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升