基于LSTM-HFTS-EC的PM2.5区间多尺度组合预测研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on PM2.5 Interval Multiscale Combination Prediction Based on LSTMHFTS-EC
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对PM2.5传统点值预测会损失浓度值的波动信息,进而无法充分表示和估计其波动和变化的区间范围,提出了一种基于长短期记忆模型(LSTM)-混合模糊时间序列(HFTS)-误差修正(EC)的PM2.5区间多尺度组合预测方法;在结合深度学习和区间多尺度分解方法的基础上,进一步考虑预测误差中隐含的有效信息,建立区间时间序列组合预测模型;该模型能够从随机性较大的时间序列中提取复杂数据特征,解决传统预测方法存在的滞后性以及对误差信息利用不充分等问题;最后,通过实证分析说明该方法适用于具有较大波动的PM2.5区间预测,与已有方法相比具有较高的精确度和良好的适用性。

    Abstract:

    Traditional PM2.5 point value prediction would lose the fluctuation information of concentration value, and thus could not adequately represent and estimate the range of its fluctuation and change. A multiscale combination prediction method for PM2.5 range is proposed based on long shortterm memory (LSTM), hybrid fuzzy time series (HFTS) and error correction (EC). Based on deep learning and interval multiscale decomposition method, the combined prediction model of interval time series is established by further considering the effective information hidden in the prediction error. This model can extract complex data features from time series with large randomness, and solve the problems of lag existing in traditional forecasting methods and insufficient use of error information. Finally, the empirical analysis shows that this method is suitable for the prediction of PM2.5 range with large fluctuation, and has higher accuracy and good applicability by comparing with the existing methods.

    参考文献
    相似文献
    引证文献
引用本文

罗瑞, 刘金培, 陈华友, 陶志富.基于LSTM-HFTS-EC的PM2.5区间多尺度组合预测研究[J].重庆工商大学学报(自然科学版),2022,39(2):59-67
LUO Rui, LIU Jin-pei, CHEN Hua-you, TAO Zhi-fu. Research on PM2.5 Interval Multiscale Combination Prediction Based on LSTMHFTS-EC[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2022,39(2):59-67

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-25
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升