关于不定方程 x3+1=158y2
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


On the Diophantine Equation x3+1=158y2
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    关于不定方程 x3±1=Dy2(D>0)所有整数解的求解问题,当D有6k+1形的素因数时,方程的解比较困难;当D=158时,不定方程 x3±1=Dy2,主要运用Pell方程、递归数列等方法证明了仅有整数解(-1,0),(293,±399).

    Abstract:

    On the Indefinite Equation,there have been a lot of researches, when the D doesn‘t has the prime factor shape of 6k+1,all of its solutions have been obtained by Ke Zhao, Sun Qi, Cao Zhenfu, Liu Peijie, and so on.When the prime factor has the shape of 6k+1, the solution of the equation is difficult.Current equation x3+1=158y2(D>0),when D<100,all cases have been resolved (see Table 3).But when 200>D>100,it's not finished yet.By using the Pell Equation, the method of Recursive Sequence proved that when D=158,the Diophantine equation x3+1=158y2 has only integer solution(x,y)=(-1,0),(293,±399).

    参考文献
    相似文献
    引证文献
引用本文

李小丽, 罗明.关于不定方程 x3+1=158y2[J].重庆工商大学学报(自然科学版),2019,36(5):77-81
LI Xiao-li, LUO Ming. On the Diophantine Equation x3+1=158y2[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2019,36(5):77-81

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-10-09
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升