基于Stacking算法的员工离职预测分析与研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Analysis and Research on Employee Turnover Prediction Based on Stacking Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对员工离职会增加企业运营成本,降低企业盈利能力的问题,提出使用机器学习的离职员工预测算法;通过Stacking集成学习算法组合Adaboost和Random Forest基本算法构建LRA预测模型,实现对某企业的员工离职预测;实验结果显示,LRA模型的预测准确率为89.09%,相对于单一算法所构建验证的模型预测准确率明显提高, LRA模型的查准率、查全率以及F1度量指标证实模型的可行性与可靠性,通过对输入LRA模型的特征进行重要性排序,得到影响员工离职的主要因素有加班、工龄(0-3年)、收入、职业级别等,丰富已有研究的结论,有利于企业决策者,针对离职行为进行合理决策。

    Abstract:

    Aiming at the problem that employee turnover will increase the operating cost and reduce the profitability of the enterprise, this paper proposes the prediction algorithm of the resigned employees using machine learning algorithm. The LRA prediction model is constructed by combining Adaboost and Random Forest basic algorithms with Stacking ensemble algorithm to predict employee turnover in an enterprise. Experimental results show that the prediction accuracy of LRA model is 89.09%, which is significantly higher than that of the model constructed by a single algorithm. Precision, recall and F1 metrics confirm the feasibility and reliability of the model.By sorting the importance of the input LRA model’s features, the main factors affecting employee resignation are overtime, length of service (0-3 years), income, occupational level, etc., this method enriches the conclusions of existing studies and is beneficial to enterprise decision-makers to make reasonable decisions on employee turnover behavior.

    参考文献
    相似文献
    引证文献
引用本文

李强, 翟亮.基于Stacking算法的员工离职预测分析与研究[J].重庆工商大学学报(自然科学版),2019,36(1):117-123
LI Qiang, ZHAI Liang. Analysis and Research on Employee Turnover Prediction Based on Stacking Algorithm[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2019,36(1):117-123

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-01-14
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升