鲁棒多目标优化问题的最优性和对偶性
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Optimality and Duality for Robust Multiobjective Optimization Problems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对非光滑、非凸实值函数的鲁棒多目标优化问题,建立鲁棒(弱)有效解的充分优化条件,并探索了对偶(鲁棒)多目标问题的强弱对偶关系;利用复合函数的极限次微分,凸性推广至(严格)广义伪凸的条件下仍能得到优化问题的最优性条件,并进一步通过对偶问题建立强弱鲁棒对偶性;最后在(严格)广义伪凸的条件之下,得到3个定理并加以证明。

    Abstract:

    For the robust multiobjective optimization problem involving nonsmooth/nonconvex real-valued functions,the sufficient optimality conditions for robust (weakly) Pareto solutions are established. In addition,weak and strong duality relations of the dual multiobjective problem are explored. Using the limiting subdifferential of the compound function,the optimality condition of the optimization problem can still be obtained under the condition of (strictly) generalized pseudoconvex,and the strong and werk duality can be established by the dual problem. Finally,under the condition of (strictly) generalized pseudoconvex,three theorems are obtained and proved.

    参考文献
    相似文献
    引证文献
引用本文

周俊屹, 郑霜.鲁棒多目标优化问题的最优性和对偶性[J].重庆工商大学学报(自然科学版),2019,36(1):49-53
ZHOU Jun-yi, ZHENG Shuang. Optimality and Duality for Robust Multiobjective Optimization Problems[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2019,36(1):49-53

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-01-14
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升