一类复平面内二阶微分方程解的渐近式
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Asymptotic Formula of the Second Order Differential Equation Solution in the Complex Plane
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对如何求解一类复平面内满足一定初始条件下的二阶微分方程的通解和特解,以及微分方程特解及其导数在不同区域内渐近表达式的问题,提出了利用积分方程理论和微分算子中特征值和特征函数渐近理论推导并证明了相关结论;通过在积分方程中引入满足特定条件的积分核的方法证明了积分方程解的有界性和连续性,从而为后续结论的推导证明提供了理论支撑,另外通过引入一类性质很好的广义积分函数并通过迭代逼近的方法给出了微分方程特解及其导数在特定区域内的渐近表达式;根据所得结果可知,微分方程特解的渐近式的精度得以提高,同时探讨了进一步提高微分方程特解的渐近式精度的方法.

    Abstract:

    In view of how to solve the general solution and special solution to meet some initial conditions of the second order differential equation within a class of complex plane, the solution and its derivative of the differential equation, and its asymptotic expressions in different areas of the problem, this paper proposed to use the theory of integral equation and differential operator eigenvalue and eigenfunction of gradual theoretical derivation and proved the relevant conclusions. By introducing the integral kernel method which satisfies certain conditions in the integral equation, the boundedness and continuity of the integral equation solution are proved, which provide the theoretical support for subsequent conclusion. By introducing a kind of good nature generalized integral function and by using the method of iterative approximation, the special solution of the differential equation and its asymptotic expression of its derivative in a specific area are given. According to the results, the precision of the special solution of the differential equation is improved, meanwhile, the method for further improving the asymptotic expression precision of the special solution of the differential equation is discussed.

    参考文献
    相似文献
    引证文献
引用本文

崔庆岳, 赵国瑞.一类复平面内二阶微分方程解的渐近式[J].重庆工商大学学报(自然科学版),2019,36(1):21-26
CUI Qing-yue, ZHAO Guo-rui. Asymptotic Formula of the Second Order Differential Equation Solution in the Complex Plane[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2019,36(1):21-26

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-01-14
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升