改进磷虾群算法在变电站选址中的应用*
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


The Application of Improved KH Algorithm in Substation Site Selection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着用电设备使用的增多,必需新建变电站来扩大电力负荷输出规模,针对如何快速并有效地确定候选变电站最优站址的问题,提出了一种新型改进磷虾—粒子群优化算法;在算法中,首先将随机产生的初始种群分为两个子种群,分别用于磷虾算法和粒子群算法,然后再将更新后的种群合并,通过种群的分离与合并,所有个体可以彼此交换位置信息,既能增加种群多样性又可避免陷入局部解,并且在保证找到全局最优解的情况下不添加任何附加操作;为了验证算法的有效性,将其用于变电站选址的工程问题中,由仿真结果可知:混合磷虾—粒子群优化算法寻优效率高,结果准确。

    Abstract:

    With the increasing use of electrical equipment, it is necessary to build new substation to expand the scale of power system. Combining the advantages of KH algorithm and PSO algorithm, a novel hybrid algorithm, called KH–PSO, is presented for the application of substation site selection. In the new improved KH–PSO, the randomly generated initial population is divided into two subpopulations for the krill algorithm and the particle swarm algorithm. By population separation and merging, all individuals can exchange position information with each other. This method can avoid the premature convergence, and find the global optimal solution without introducing additional operators to the basic KH and PSO algorithms. To verify its performance, experiments are carried out on the problem of substation site selection. Based on the results, we can easily infer that the hybrid KH–QPSO is more efficient and accurate.

    参考文献
    相似文献
    引证文献
引用本文

李玲纯, 高来鑫.改进磷虾群算法在变电站选址中的应用*[J].重庆工商大学学报(自然科学版),2018,35(3):82-86
LI Lingchun, GAO Laixin. The Application of Improved KH Algorithm in Substation Site Selection[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2018,35(3):82-86

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-05-10
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升