浅析n维欧氏空间上Borel集的构造*
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


A Brief Analysis on the Construction of Borel Sets in n Dimensional Euclidean Space
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对n维欧氏空间上Borel〖WTBX〗集的构造问题,提出几个具有测度论特色的结果加以详细讨论.利用n维欧氏空间中左端点形如mi/2l(其中mi为整数,l为正整数),且长度均为1/2l的那些左开右闭区间形成的集类Al的优良结构,结合实数域上的区间划分、不等式与拓扑技巧,证明了Al是n维欧氏空间的可数无限划分,且随着l变得越大Al变得越精细,对n维欧氏空间中开集中的任意一点来说,当l充分大时,Al中包含该点的那个成员必定包含于该开集中;在此基础上用反证法证明了n维欧氏空间中任一开集都可表示成至多可数无限多个两两不交的n维左开右闭区间之并;最后以此结论为工具,介绍了n维欧氏空间上〖WTBZ〗Borel代数的几个较小生成元.

    Abstract:

    Focusing on the construction of Borel sets in n dimensional Euclidean space, we propose several results of measure theory features for detailed discussion. Utilizing the good structure of set class Al which consists of those n dimensional leftopen and rightclosed intervals such that left end point is mi/2l(where mi is integer and l is positive integer) and length of each side is 1/2l, combined with partition of real line, inequality techniques and topological techniques,we first prove that Al is a countably infinite partition of n dimensional Euclidean space for each positive integer l, and as l gets larger,Al gets finer, and for each point in each open subset of the n dimensional Euclidean space,the member in Al who contained the point must be contained by the open subset when l is sufficiently large. Then, based on the previous results we prove that every open subset in n dimensional Euclidean space can be expressed as the union of at most countably infinite n dimensional leftopen and rightclosed intervals by way of contradiction. Last, arming with this theorem, we introduce some generators for the Borel algebra of n dimensional Euclidean Space.

    参考文献
    相似文献
    引证文献
引用本文

曾小林,黄一缘.浅析n维欧氏空间上Borel集的构造*[J].重庆工商大学学报(自然科学版),2018,35(3):55-59
ZENG Xiaolin,HUANG Yiyuan. A Brief Analysis on the Construction of Borel Sets in n Dimensional Euclidean Space[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2018,35(3):55-59

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-05-10
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升