基于IGS方法的最佳分类数研究*
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on the Optimal Number of Classification Based on IGS Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对选择Gap Statistic(GS)方法估计聚类数能够得到数据集的粗略分类,但不能进一步对数据集进行细分类这一问题,对GS方法进行改进;将Gap统计量引入到ISODATA算法中,提出了IGS模型;实证表明,IGS模型不仅可以实现数据的细分类,而且通过IGS模型估计数据集的最佳分类数准确率明显高于原GS模型。

    Abstract:

    According to the problem that Gap Statistics (GS) method can get rough classification of data sets and can not get the fine classification of data sets, this paper improves GS method by introducing Gap statistic into ISODATA algorithm and proposes IGS model. Empirical research indicates that IGS model can not only realize the fine classification of data but also can estimate the optimal number of classification of the data sets through IGS model whose accuracy is obviously higher than original GS model.

    参考文献
    相似文献
    引证文献
引用本文

窦婷,张正军*.基于IGS方法的最佳分类数研究*[J].重庆工商大学学报(自然科学版),2017,34(6):29-33
DOU Ting, ZHANG Zheng-jun. Research on the Optimal Number of Classification Based on IGS Method[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2017,34(6):29-33

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-11-15
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升