The integer solution to Diophantine equation is an important branch of the number theory, the problem of integer solution to the Diophantine equation x^2+64=4y^n(x,y∈Z) is discussed by using the methods of algebraic number theory and congruence when n=7,11. and that the Diophantine equation x^2+64=4y^n(n=7,11) has no integer solution is proved.
参考文献
相似文献
引证文献
引用本文
尚旭.关于不定方程x2+64=4yn(n=7,11)的解[J].重庆工商大学学报(自然科学版),2017,34(4):32-34 SHANG Xu. The Solution on Diophantine Equation x^2+64=4y^n(n=7,11)[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2017,34(4):32-34