Bernstein Bezout矩阵与可控制型/可观测型矩阵之间的联系
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Connections between Bernstein Bezout Matrix and Generalized Controllability/Observabilitytype Matrices
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    通过多项式标准幂基与Bernstein基之间的转换关系给出了经典Bezout矩阵与Bernstein Bezout矩阵之间的相互联系;同时,由标准线性控制系统中的可控制型/可观测型矩阵构造出Bernstein基下的线性控制系统理论中的(广义)可控制型/可观测型矩阵,并建立Bernstein Bezout矩阵与对应的(广义)可控制型/可观测型矩阵之间的联系,所得结果和标准幂基下的有关结果是平行的.

    Abstract:

    The relationships between the classical Bezout matrix and Bernstein Bezout matrix are given by the transformation matrix of the standard power basis and Bernstein polynomial basis. Meanwhile, a generalized linear control system for the Bernstein polynomial basis is established from the classical one, and a kind of generalized controllability/observabilitytype matrices is constructed correspondingly. Finally, connections between Bernstein Bezout matrix and generalized controllability/observabilitytype matrices are discussed. The results obtained are parallel to the previous ones for the standard power basis.

    参考文献
    相似文献
    引证文献
引用本文

郑婷婷,吴化璋. Bernstein Bezout矩阵与可控制型/可观测型矩阵之间的联系[J].重庆工商大学学报(自然科学版),2017,34(2):12-15
ZHENG Tingting, WU Huazhang. Connections between Bernstein Bezout Matrix and Generalized Controllability/Observabilitytype Matrices[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2017,34(2):12-15

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-03-21
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升