一类广义凸集值优化的Henig真有效元
作者:

Henig Proper Efficiency of a Generalized Convex Setvalued Optimization Problem
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    在局部凸拓扑空间中,利用比广义slater约束条件更弱的条件(C),研究了内部锥类凸集值优化问题的Henig真有效元的Lagrange型最优性条件;所得结果均不要求约束锥有闭有界基.

    Abstract:

    In locally convex topological space, by applying the condition (C) which is weaker than the generalized slater constraint condition, we have studied the Lagrange type optimality condition for the Henig Proper Efficiency of the icconeconvexlike setvalued optimization problem. And meanwhile all the results obtained in this paper are proven under the conditions that the constraint cone needs not to have a closed convex bounded base.

    参考文献
    相似文献
    引证文献
引用本文

王海英, 符祖峰.一类广义凸集值优化的Henig真有效元[J].重庆工商大学学报(自然科学版),2016,33(6):47-50
WANG Haiying, FU Zufeng. Henig Proper Efficiency of a Generalized Convex Setvalued Optimization Problem[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2016,33(6):47-50

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 在线发布日期: 2016-11-21
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升