一种基于数据挖掘的零售业客户细分方法研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on Customer Segmentation Method in Retail Industry Based on Data Mining
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对零售业客户细分指标粗糙和方法精准性低的问题,提出一种基于数据挖掘聚类分析的零售业客户细分方法;方法构建了一套基于RFM的多指标客户细分指标体系,采用熵值法赋予指标权重,进而使用KMeans算法进行客户细分;实证研究结果表明:方法在客户行为特征区分能力和聚类紧凑性方面均优于传统基于RFM的细分方法,方法可行、有效,能够更好地解决零售业客户细分问题,提升客户关系管理和营销决策质量.

    Abstract:

    Due to the problem in the roughness of customer segmentation indicator and low accuracy in retail industry, a customer segmentation method in retail industry is propoesed on the basis of clustering analysis of data mining, and a set of RFM based on multiindicator customer segmentation index system is constructed by using entropy value method to give indicator weight and then by using KMeans algorithm to conduct customer segmentation. Empirical research results show that this method is better than the traditional RFM based on segmentation method in the perspective of distinguishing capacity for customer behaviors feature and clustering compactness, and this method, with feasibility and validity, can better solve the problem in customer segmentation in retail industry and improves the customer relation management and marketing decisionmaking quality.

    参考文献
    相似文献
    引证文献
引用本文

蔡玖琳,张磊,张秋三.一种基于数据挖掘的零售业客户细分方法研究[J].重庆工商大学学报(自然科学版),2015,32(2):43-48
CAI Jiulin, ZHANG Lei, ZHANG Qiulan. Research on Customer Segmentation Method in Retail Industry Based on Data Mining[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2015,32(2):43-48

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升