一种基于相似度量的离群点检测方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


A Kind of Outlier Detection Algorithm Based on Similarity Measurement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    离群点检测在数据挖掘的重要领域,广泛应用在信用卡欺诈检测、网络入侵检测等重要方面,文中在结合层次聚类和相似性,给出高维数据的相似度量函数与类密度的概念,并给予类密度重新定义高维数据的离群点,从而提出一种基于相似度量的离群点检测算法;实验表明:算法对高维数据中的离群点检测有一定的价值。

    Abstract:

    Outlier detection is an important content in data mining and is widely used in the field of credit card fraud detection, network invasion detection and so on. According to hierarchical clustering and similarity, this paper presents the concept of high dimensional data similarity measurement function and class density, based on class density, the outlier of high dimensional data is redefined so that a kind of outlier detection algorithm based on similarity measurement is proposed. Experiment shows that this algorithm has certain value on outlier detection in high dimensional data.

    参考文献
    相似文献
    引证文献
引用本文

孙启林,方宏彬,张健,刘明术.一种基于相似度量的离群点检测方法[J].重庆工商大学学报(自然科学版),2012,29(10):96-100
SUN Qi-lin, FANG Hong-bin, ZHANG Jian, LIU Ming-shu. A Kind of Outlier Detection Algorithm Based on Similarity Measurement[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2012,29(10):96-100

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升