求解一类随机规划的Monte Carlo模拟方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Monte Carlo Simulation for Solving a Class of Stochastic Programming
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    通过对目标函数同时抽样,提出了基于Monte Carlo模拟的遗传算法,通过逐步增加样本容量和遗传进化代数以得到满足精度要求的近似最优解,并且通过统计分析方法讨论样本容量的迭代终止条件,以减少Monte Carlo随机模拟的盲目性;同时给出了最优解的表达形式以及算法的迭代终止条件;数值实验证明了方法的有效性。

    Abstract:

    The Genetic Algorithm based on Monte Carlo simulation by sampling both of objective and constraint function is presented for solving a class of stochastic programming.We can get the approximate optimal solution satisfying the requriement of accuracy through gradually increasing sample size and genetix evolutionary generations,discuss stopping crierion for iteration of the sample size to reduce the blindness of Monte Carlo stochastic simulationby statstical method,and give stopping crierion for iteration of the algorithm and the expressions of optimal solution.Numerical example is employed to demonstrate the effectiveness of the presented algorithm.

    参考文献
    相似文献
    引证文献
引用本文

贺冲.求解一类随机规划的Monte Carlo模拟方法[J].重庆工商大学学报(自然科学版),2012,29(6):30-35
HE Chong. Monte Carlo Simulation for Solving a Class of Stochastic Programming[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2012,29(6):30-35

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升