二阶变系数齐线性常微分方程的求解
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Solution to Second-order Homogeneous-linear Ordinary Differential Equations with Variable Coefficients
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    给出了二阶变系数齐线性常微分方程一种新的求解方法.将二阶变系数齐线性常微分方程问题转化为Riccati方程来求解,讨论了二阶变系数齐线性常微分方程的通解和初值问题,得到初值问题近似解的理论基础、计算方法和误差估计.

    Abstract:

    This paper presents a new method of solution to the second order homogeneous linear ordinary differential equation with variable coefficients.The second-order homogeneous linear ordinary differential equation with variable coefficients can be translated to Riccati equation and its general solution and initial value problem were discussed.The basic principle,calculating method and error estimation were obtained about approximate solution of initial value problem.

    参考文献
    相似文献
    引证文献
引用本文

方辉平; 叶鸣;.二阶变系数齐线性常微分方程的求解[J].重庆工商大学学报(自然科学版),2011,28(1):14-17
FANG Hui-ping; YE Ming. Solution to Second-order Homogeneous-linear Ordinary Differential Equations with Variable Coefficients[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2011,28(1):14-17

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升