库存不足条件下车辆路径问题及其改进PSO算法 3
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Vehicle routine problem under the condition of stock shortage and its improved PSO algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    摘 要:分析并构建了库存不足条件下车辆路径问题的数学模型;在模型的求解上,提出一种基于子群 协作的动态粒子群算法;最后通过算例实验表明:该算法能有效克服标准粒子群算法迭代寻优时选择步长 的盲目性,也改善了算法求解时容易陷入局部最优、导致早熟的缺陷,具有较强的全局寻优能力,收敛速度 快,计算精度高。

    Abstract:

    Abstract: This paper analyzed and established mathematic models for vehicle routine p roblem under the con2 dition of stock shortage. To solve the models, it p resented a dynamic particle swarm op timization algorithm based on sub2group collaboration. Finally, the paper made some experimental calculations, and the results of calculations p roved that the algorithm could avoid blind search effectively, and overcome the limitation of easily trapp ing in local extreme points and leading to p remature, as a result, it had better capability of global op timization, higher speed of convergence and p recision than standard particle swarm op timization.

    参考文献
    相似文献
    引证文献
引用本文

方金城 , 张岐山.库存不足条件下车辆路径问题及其改进PSO算法 3[J].重庆工商大学学报(自然科学版),2009,(6):553-557
FANG Jincheng, ZHANG Qishan. Vehicle routine problem under the condition of stock shortage and its improved PSO algorithm[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2009,(6):553-557

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升