蚁群算法训练神经网络辨识混沌系统
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Training BP neural networks with ACO for identification of chaotic systems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    摘要:提出了一种利用蚁群算法训练神经网络的算法,进行混沌系统辨识,并与神经网络、遗传神 经网络对同一混沌系统辨识的结果进行比较;实验表明:利用蚁群算法训练神经网络进行混沌系统 的辨识,能克服BP求解精度低、搜索速度慢、易于陷入局部极小的缺点;与遗传神经网络相比,虽 然执行时间唷所增加,但求解精度显著提高,可有效用于混沌系统辨识。

    Abstract:

    Abstract:BP is the most commonly used artificial neural networks,but it sufers from extensive computations,rel— atively slow convergence speed and other possible weaknesses for complex problems.Genetic Algorithm (GA)has been successfully used to train neural networks,but often with the result of exponential computational complexities and hard implementation.Hence Ant Colony Optimization(ACO)is used to train BP in the paper.The eficiency of BP trained with ACO is compared with those of BP and._BP trained with GA based on the identification of the same chaotic system.Comparison based on the searching precision and convergence speed of each method show that BP trained with ACO is dominant and effective to identify chaotic system.

    参考文献
    相似文献
    引证文献
引用本文

成伟.蚁群算法训练神经网络辨识混沌系统[J].重庆工商大学学报(自然科学版),2009,(2):156-
CHENG W ei. Training BP neural networks with ACO for identification of chaotic systems[J]. Journal of Chongqing Technology and Business University(Natural Science Edition),2009,(2):156-

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
×
2024年《重庆工商大学学报(自然科学版)》影响因子显著提升