引用本文:李佳颖,陈 浩.比例延迟微分方程的极限学习机算法(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2024,41(1):106-112
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 301次   下载 767 本文二维码信息
码上扫一扫!
分享到: 微信 更多
比例延迟微分方程的极限学习机算法
李佳颖,陈 浩
重庆师范大学 数学科学学院,重庆 401331
摘要:
目的 针对比例延迟微分方程,提出一种基于极限学习机(ELM)算法的单隐藏层前馈神经网络训练方法,并 将该方法推广到求解双比例延迟微分系统。 方法 首先,构建一个单隐藏层前馈神经网络并随机生成输入权值和隐 藏层偏置;然后,通过计算系数矩阵使其满足比例延迟微分方程及其初值条件,将其转化为最小二乘问题,利用摩 尔-彭罗斯广义逆解出输出权值;最后,将输出权值代入构建的神经网络便可获得具有较高精度的比例延迟微分方 程数值解。 结果 通过数值实验与已有方法的结果进行比较,验证了该方法对处理比例延迟微分方程与双比例延迟 微分系统的有效性,且随着选取的训练点和隐藏层节点数量增多,所得到的数值解精度和收敛速度也随之增加。 结论 ELM 算法对处理比例延迟微分方程以及双比例延迟微分系统具有较好的效果。
关键词:  前馈神经网络  比例延迟微分方程  极限学习机  双比例延迟微分系统
DOI:
分类号:
基金项目:
Extreme Learning Machine Algorithm for Pantograph Delay Differential Equations
LI Jiaying, CHEN Hao
School of Mathematical Sciences, Chongqing Normal University,Chongqing 401331, China
Abstract:
Objective A single hidden layer feed-forward neural network training method based on extreme learning machine ELM was proposed for pantograph delay differential equations and the method was extended to deal with the system of pantograph equations with two delays. Methods Firstly a feed-forward neural network with a single hidden layer was constructed and the input weights and hidden layer bias were randomly generated. Then by calculating the coefficient matrix to satisfy the pantograph delay differential equation and its initial value conditions the equation was transformed into a least squares problem and the output weight was obtained by using the Moor-Penrose generalized inverse solution. Finally the numerical solution of the pantograph delay differential equation with high precision could be obtained by inputting the output weights into the constructed neural network. Results By comparing the results of numerical experiments with those of existing methods the effectiveness of the proposed method in dealing with pantograph delay differential equations and the system of pantograph equations with two delays was verified. With the increase in the number of selected training points and hidden layer nodes the accuracy and convergence rate of the numerical solutions were also increased. Conclusion The ELM algorithm is effective in dealing with pantograph delay differential equations and the system of pantograph equations with two delays.
Key words:  feed-forward neural networks  pantograph delay differential equation  extreme learning machine  pantograph equation with two delays
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752806位访客
关注微信二维码