引用本文:任 宇, 陈新泉, 王岱嵘, 陈新怡.改进残差网络与峰值帧的微表情识别(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2024,41(1):21-29
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 487次   下载 1448 本文二维码信息
码上扫一扫!
分享到: 微信 更多
改进残差网络与峰值帧的微表情识别
任 宇, 陈新泉, 王岱嵘, 陈新怡
安徽工程大学 计算机与信息学院, 安徽 芜湖 241000
摘要:
目的 微表情(Micro Expression, ME)是人们流露内心情感时展现出的细微面部表情。 针对微表情识别的样 本较少且不同类别数量分布不均导致难以识别和识别准确率较低的问题,提出能够提高微表情识别准确率的模型 框架。 方法 提取微表情视频序列中含有更多关键表情信息的峰值帧;使用加入 SE 模块的改进残差网络 SEResNeXt-50 对微表情的峰值帧进行特征提取,其中 SE 模块可以更好地学习特征中的关键信息,ResNeXt 通过分组 卷积的方式用稀疏结构取代密集结构从而使结构更加简化,提升了识别效率。 与此同时,使用 Focal Loss 损失函数 可以更好地解决因微表情数据的不平衡带来的模型性能问题。 结果 在微表情数据集 CASMEⅡ上进行了仿真实 验,可以发现改进的残差网络与峰值帧提高了微表情识别的准确率与 F1 值。 结论 改进的残差网络与峰值帧可以 降低数据集较少所带来的影响,使模型有着良好的拟合效果,同时改善了在不同类别上表现差异较大的问题,提升 了微表情的识别准确率,对于微表情识别有着更好的识别性能。
关键词:  微表情识别  残差网络  峰值帧  深度学习
DOI:
分类号:
基金项目:
Micro-expression Recognition Based on Improved Residual Network and Apex Frame
REN Yu, CHEN Xinquan, WANG Dairong, CHEN Xinyi
School of Computer and Information, Anhui Polytechnic University, Anhui Wuhu 241000, China
Abstract:
Objective Micro-expression ME is the subtle facial expression that reveals one ?? s inner emotions. The number of samples for micro-expression recognition is small and the number of different categories is uneven leading to difficulty in recognition and low recognition accuracy. In view of this a model framework that can improve the accuracy of micro-expression recognition was proposed. Methods Peak frames containing more key expression information were extracted from the micro-expression video sequences. An improved residual network SE-ResNeXt-50 incorporating the SE module was used to extract features from the apex frames of micro-expressions. The SE module learned the key information in the features better. ResNeXt simplified the structure by replacing the dense structure with a sparse one by means of group convolution thus improving the recognition efficiency. At the same time the Focal Loss function was used to better solve the model performance problems caused by the imbalance of micro-expression data. Results Simulation experiments were conducted on the micro-expression dataset CASME II and it was found that the improved residual network and apex frames improved the accuracy and F1 value of micro-expression recognition. Conclusion The improved residual network and apex frames can reduce the impact caused by fewer data sets so that the model has a good fitting effect. At the same time it can mitigate the impact caused by the performance differences in different categories improve the accuracy of micro-expression recognition and have better recognition performance for micro-expression recognition.
Key words:  micro-expression recognition  residual network  apex frame  deep learning
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752796位访客
关注微信二维码