引用本文:姜 茜1 ,赵培信1,2.一类双函数系数 ARCH-M 模型的经验似然估计(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2023,40(2):106-112
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 279次   下载 1001 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一类双函数系数 ARCH-M 模型的经验似然估计
姜 茜1 ,赵培信1,2
1. 重庆工商大学 数学与统计学院,重庆 400067 2. 重庆工商大学 经济社会应用统计重庆市重点实验室,重庆 400067
摘要:
针对一类双函数系数自回归条件异方差-均值(ARCH-M)模型的估计问题,提出一种基于经验似然的估计 方法;在该估计方法中,所提出的模型允许金融时间序列的风险效应和收益效应同时为某一变量的函数结构,可以 有效地刻画金融时间序列的风险和平均收益之间的关系,具有较广的适应性;同时,与经典矩估计法和极大似然估 计法相比,基于经验似然的估计方法具有独特的优势,可以充分考虑金融序列的异方差性,并且所构造的置信区间 不涉及任何渐近方差的估计,因此具有较好的稳健性和有效性;在一些正则条件下,对所构造的经验对数似然比统 计量及函数系数估计量的渐近分布进行了理论分析;结果表明:关于风险效应函数系数和收益效应函数系数的经 验对数似然比统计量均渐近收敛于中心卡方分布,同时函数系数估计量渐近收敛于正态分布;进而对风险效应函 数系数和收益效应函数系数分别构造了相应函数系数的逐点置信区间。
关键词:  函数系数模型  ARCH-M 模型  经验似然  置信区间
DOI:
分类号:
基金项目:
Empirical Likelihood Estimation of a Class of Double-function Coefficient ARCH-M Models
JIANG Qian 1 , ZHAO Peixin 1,21,2
1. School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China;2. Chongqing Key Laboratory of Economic and Social Applied Statistics, Chongqing Technology and Business University, Chongqing 400067, China
Abstract:
An estimation method based on empirical likelihood was proposed for a class of double-function coefficient autoregressive conditional heteroscedasticity-mean (ARCH-M) model. In this method, the proposed model allows the risk effect and return effect of financial time series to be the functional structure of a certain variable at the same time, which can effectively describe the relationship between the risk and average return of financial time series and has a wide range of adaptability. Meanwhile, compared with the classical moment estimation method and maximum likelihood estimation method, the estimation method based on empirical likelihood has unique advantages. This estimation method can fully consider the heteroscedasticity of financial series, and the constructed confidence interval does not involve any estimation of asymptotic variance, so it has better robustness and effectiveness. Under some regularity conditions, the asymptotic distribution of the constructed empirical log-likelihood ratio statistic and the estimator of function coefficients was analyzed theoretically. The results showed that the empirical log-likelihood ratio statistics about the risk effect function coefficient and the income effect function coefficient asymptotically converged to the central chi-square distribution, while the function coefficient estimator asymptotically converged to the normal distribution. Additionally, the point-by-poin confidence intervals of the corresponding function coefficients were constructed for the risk effect function coefficient and the income effect function coefficient, respectively.
Key words:  function coefficient model  ARCH-M model  empirical likelihood  confidence interval
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752857位访客
关注微信二维码