引用本文:李 梦,黄章杰,徐健晖.基于深度学习和小波分析的 LSTM-Wavelet 模型股价预测(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2023,40(2):99-105
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1546次   下载 14360 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于深度学习和小波分析的 LSTM-Wavelet 模型股价预测
李 梦,黄章杰,徐健晖
重庆工商大学 数学与统计学院,重庆 400067
摘要:
针对股价数据具有高噪声、非线性和非平稳性等特征,使得股价精确预测非常困难的问题,提出小波-长短 记忆网络(LSTM-Wavelet)模型应用于股价预测。 首先,利用小波(Wavelet)分解降低金融时间序列的不稳定性,并 分析小波系数的细节特征;接着,发挥长短记忆网络(LSTM)模型的优势,深层挖掘小波系数中的长期依赖关系,对 分解后的各层小波系数分别建模预测;最后进行预测小波系数的数据重构。 使用中石油近两年的股价数据进行实 证分析,以每个交易日的开盘价、最高价、最低价、交易量为特征输入,预测当日中石油的收盘价。 结果表明:相较 于标准 LSTM 模型和小波- ARIMA (ARIMA-Wavelet)模型,提出的 LSTM-Wavelet 模型有更好的预测效果; 通过 小波分析将复杂股票数据,分解为长短记忆网络(LSTM)容易识别的小波系数,根据各层小波系数不同的数据特征 进行分层预测,提高了预测精度。
关键词:  股价预测  小波分解  LSTM 模型  LSTM-Wavelet 模型
DOI:
分类号:
基金项目:
Stock Price Prediction with LSTM-Wavelet Model Based on Deep Learning and Wavelet Analysis
LI Meng, HUANG Zhangjie, XU Jianhui
School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China
Abstract:
Accurate stock price prediction is very difficult due to the high noise, non-linearity, and non-smoothness of stock price data. A wavelet-long and short-term memory network (LSTM-Wavelet) model was proposed for stock price prediction. First, wavelet decomposition was used to reduce the instability of financial time series, and the detailed features of wavelet coefficients were analyzed. Then, taking advantage of the long and short-term memory network (LSTM) model, the long-term dependencies in the wavelet coefficients were mined deeply and the predictions were modeled separately for each layer of the decomposed wavelet coefficients. Finally, the data reconstruction of the predicted wavelet coefficients was performed. Based on the empirical analysis of PetroChina’ s stock price data for the past two years, the opening price, high price, low price, and trading volume of each trading day were used as the characteristic inputs to predict the closing price of PetroChina on that day. The results showed that the proposed LSTM-Wavelet model had better prediction results compared with the standard LSTM model and the wavelet-ARIMA (ARIMA-Wavelet) model; the complex stock data were decomposed into wavelet coefficients easily recognized by Long Short Term Memory (LSTM) network through wavelet analysis, the stratified prediction was performed based on the data characteristics with different wavelet coefficients in each layer, and the prediction accuracy has been improved.
Key words:  stock price prediction  wavelet decomposition  LSTM model  LSTM-Wavelet model
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752796位访客
关注微信二维码