引用本文:张茼茼, 刘 恒.基于潜在特征重构和注意力机制的人脸图像修复(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2023,40(2):73-78
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 262次   下载 878 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于潜在特征重构和注意力机制的人脸图像修复
张茼茼, 刘 恒
安徽工业大学 计算机科学与技术学院, 安徽 马鞍山 243000
摘要:
本研究针对现有图像修复方法不能有效地分离结构和纹理信息,修复结果往往会出现边界模糊、结构扭曲 等伪影问题,提出了基于潜在特征重构和注意力机制的人脸图像修复方法。 人脸图像修复方法分为两阶段,第一 阶段,通过结构重建器网络提取样式向量,按照 StyleGAN 所述的原理分为粗尺度特征、中尺度特征和精细特征三 组,插入到预先训练好的 StyleGAN 生成器中,产生初步的修复结果;第二阶段通过构建纹理生成网络并使用上下 文注意力机制,注意力分数由注意力计算模块计算,注意力转移模块根据较高级别特征图和注意力分数来填充较 低级别特征图中的对应缺失区域,以细化上一阶段初步的人脸修复结果。 在 CelebA-HQ 数据集上的训练并进行 测试,本文的方法在定量和定性分析两个方面均优于现有方法。 因此,基于潜在特征重构和注意力机制的人脸图 像修复方法能够有效地修复缺损人脸图像,大大减少了边界过度平滑和存在纹理伪影的问题。
关键词:  图像修复  结构重建  纹理生成  注意力
DOI:
分类号:
基金项目:
Face Image Restoration Based on Latent Feature Reconstruction and Attention Mechanism
ZHANG Tongtong, LIU Heng
School of Computer Science and Technology, Anhui University of Technology, Anhui Maanshan 243000, China
Abstract:
In this study, a face image restoration method based on latent feature reconstruction and attention mechanism was proposed to address the problem that existing image restoration methods cannot effectively separate structure and texture information, and the restoration results often show artifacts such as blurred boundaries and distorted structures. The face image restoration method was divided into two stages. In the first stage, the style vectors were extracted through the structural reconstruction network and divided into three groups of coarse-scale features, medium-scale features, and fine features according to the principles described by StyleGAN, which were inserted into the pre-trained StyleGAN generator to produce initial restoration results. In the second stage, by building a texture generation network and using a contextual attention mechanism, the attention score was calculated by the attention calculation module, and the attention transfer module filled in the corresponding missing regions in the lower-level feature images based on the higher level feature images and the attention scores to refine the initial face restoration results from the previous stage. Trained and tested on the CelebA-HQ dataset, the method in this paper outperformed existing methods in both quantitative and qualitative analysis. Thus, the face image restoration method based on latent feature reconstruction and attention mechanism can effectively repair defective face images, greatly reducing the problems of excessive smooth boundaries and the presence of texture artifacts.
Key words:  image restoration  structural reconstruction  texture generation  attention
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752863位访客
关注微信二维码