引用本文: | 许海波1,王蔚鸿2,吴玉国1,魏 伟3,4, 时礼平1,5,6,李 蒙1,5,6, 王 涛1,5,6,江海滨2.数控凸轮轴磨床综合误差分析与建模(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2023,40(2):21-28 |
| CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435 |
|
|
|
本文已被:浏览 397次 下载 952次 |
 码上扫一扫! |
|
数控凸轮轴磨床综合误差分析与建模 |
许海波1,王蔚鸿2,吴玉国1,魏 伟3,4, 时礼平1,5,6,李 蒙1,5,6, 王 涛1,5,6,江海滨2
|
1. 安徽工业大学 机械工程学院,安徽 马鞍山 243032
2. 安庆中船柴油机有限公司,安徽 安庆 246005
3. 安徽工业大学 科研处,安徽 马鞍山 243032
4. 安徽工业大学 液压振动与控制教育部工程研究中心,安徽 马鞍山 243002
5. 特种服役环境的智能装备制造国际科技合作基地,安徽 马鞍山 243032
6. 特种重载机器人安徽省重点实验室,安徽 马鞍山 243032
|
|
摘要: |
为提高某数控凸轮轴磨床的磨削精度,保证凸轮轴轮廓误差达到需求标准,针对磨床的运动误差和热误差进行分析和研究;分析了凸轮轴磨床主要运动部件相互之间运动关系,提出了利用耦合关系,耦合磨床运动误差与热误差方法,方法对磨床具有通用性,且可直接观察到误差项的来源,对误差补偿极为有效;首先,运用多体理论及坐标变化方法,将磨床抽象为多体系统;其次,将磨床磨削运动主要部件划分成两条运动链,即“工件-床身”链和“砂轮-床身”链;将运动链与磨削点组成一个闭环系统,此闭环系统即为简化的磨削运动过程;最后,建立各运动体坐标系,求出运动体变换矩阵,耦合热误差与几何误差,建立精密加工约束方程,推导凸轮轴磨床综合误差模型,为加工补偿提供理论基础。 该方法已在实际生产中得到验证,结果表明:补偿后的磨床,磨削精度增加,实际凸轮轴轮廓经检测误差降低显著。 |
关键词: 闭环系统 多体理论 误差补偿 综合误差模型 |
DOI: |
分类号: |
基金项目: |
|
Comprehensive Error Analysis and Modeling of CNC Camshaft Grinder |
XU Haibo1, WANG Weihong2, WU Yuguo1, WEI Wei3,4, SHI Liping1,5,6, LI Meng1,5,6, WANG Tao1,5,6, JIANGHaibin2
|
1. School of Mechanical Engineering, Anhui University of Technology, Anhui Ma’anshan 243032, China
2. Anqing CSSC Diesel Engine Co. , Ltd. , Anhui Anqing 246005, China
3. Office of Academic Research, Anhui University of Technology, Anhui Ma’anshan 243032, China
4. Engineering Research Center for Hydraulic Vibration and Control of Ministry of Education, Anhui University of
Technology, Anhui Ma’anshan 243032, China
5. International Scientific and Technological Cooperation Base for Intelligent Equipment Manufacturing in Special Service
Environment, Anhui Ma’anshan 243032, China
6. Anhui Key Laboratory of Special Heavy-duty Robot, Anhui Ma’anshan 243032, China
|
Abstract: |
In order to improve the grinding accuracy of a CNC camshaft grinder and ensure that the camshaft profile error meets the required standard, the motion error and thermal error of the grinder were analyzed and studied. The motion relation between the main moving parts of the camshaft grinder was analyzed, and a method of coupling the motion error and thermal error of the camshaft grinder was put forward. This method is universal to the grinder, and the source of the
error can be directly observed, which is very effective for error compensation. Firstly, the multi-body system of grinding machine was abstracted by using multi-body theory and coordinate change method. Secondly, the main grinding parts of grinding machine are divided into two moving chains, namely the “work-bed” chain and the “grinding wheel-bed” chain. The motion chain and the grinding point were combined into a closed-loop system, which was a simplified grinding motion process. Finally, the coordinate system of key moving parts was established, the transformation matrix of moving parts was
obtained, the thermal error and geometric error were coupled, the constraint equation of precision machining was established, and the comprehensive error model of camshaft grinding machine was derived, providing the theoretical basis for machining compensation. The method has been verified in practical production, and the results show that the grinding accuracy of the compensated grinding machine is increased, and the error of the actual camshaft profile is significantly reduced after testing. |
Key words: closed-loop system multi-body theory error compensation comprehensive error model |
|
|
|
|
|
关注微信二维码 
|