引用本文:程泽凯,闫小利,程旺生,袁志祥.基于梯度提升决策树的焦炭质量预测模型研究(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2021,38(5):55-60
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 722次   下载 1937 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于梯度提升决策树的焦炭质量预测模型研究
程泽凯,闫小利,程旺生,袁志祥1,2,3
1.安徽工业大学 计算机科学与技术学院, 安徽 马鞍山 243002;2.马鞍山钢铁股份有限公司 制造部, 安徽 马鞍山 243000;3.工业互联网智能应用与安全安徽省工程实验室, 安徽 马鞍山 243002
摘要:
焦炭是高炉炼铁的重要原料,其质量是影响铁水质量和高炉顺行的重要因素,针对焦炭质量存在检验难、滞后性、预测误差大等问题,提出一种基于梯度提升决策树算法的焦炭预测模型;结合专家经验与相关性分析方法,深入研究配合煤质量对焦炭质量的影响;最后利用配合煤质量指标对焦炭质量指标灰分、硫分、耐磨强度、抗碎强度进行建模预测;根据某焦化厂历史生产数据对模型进行评估,实验结果表明:基于梯度提升决策树的焦炭质量预测模型相较于线性回归模型、随机森林模型,决策树模型误差小、准确率高,可以为焦化厂配煤炼焦提供一定的理论依据。
关键词:  焦炭质量  预测模型  梯度提升决策树
DOI:
分类号:
基金项目:
Research on Coke Quality Prediction Model Based on Gradient Boosting Decision Tree
CHENG Ze-kai, YAN Xiao-li, CHENG Wang-sheng, YUAN Zhi-xiang1,2,3
1.School of Computer Science and Technology, Anhui University of Technology, Anhui Maanshan 243002, China;2. Manufacturing Department, Maanshan Iron and Steel Co., Ltd, Anhui Maanshan 243000, China;3. Anhui Key Laboratory of Industrial Internet Intelligence Application and Security, Anhui Maanshan 243002, China
Abstract:
Coke is an important raw material for blast furnace ironmaking, and its quality is an important factor affecting the quality of molten iron and the smooth operation of blast furnace. In order to solve the problems of difficult inspection, hysteresis, and large prediction errors in coke quality, a coke prediction model based on gradient boosting decision tree algorithm is proposed. Combined with expert experience and correlation analysis, the influence of mixed coal quality on coke quality is studied. Finally, the mixed coal quality parameters are used to predict the ash content, sulfur content, M10 and M40 of coke quality parameters. The model is evaluated based on the historical production data of a coking plant. The experimental results show that the coke quality prediction model based on the gradient boosting decision tree has less error and higher accuracy than the linear regression model, random forest model, and decision tree model. It can provide a certain theoretical basisfor coal blending and coking of the coking plant.
Key words:  coke quality  prediction model  gradient boosting decision tree
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752840位访客
关注微信二维码