引用本文:朱标.基于优化ORB算法的图像角点特征匹配方法(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2021,38(4):42-51
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 877次   下载 1407 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于优化ORB算法的图像角点特征匹配方法
朱标1,2,3,4
1.中航华东光电有限公司,安徽 芜湖 241002;2.安徽省现代显示技术重点实验室,安徽 芜湖 241002;3.国家特种显示工程技术研究中心,安徽 芜湖 241002;4.特种显示国家工程实验室,安徽 芜湖 241002
摘要:
针对传统ORB算法的图像角点特征匹配精度不高的问题,提出基于优化ORB算法的图像角点特征匹配方法;首先使用Shi-Tomasi算法检测图像角点特征,然后使用BRIEF和SURF相融合算法生成图像角点特征双描述子序列并使用随机投影原理进行降维,最后使用优化的匹配算法进行匹配,简称Shi-Tomasi-SURFORB算法,仿真实验通过统计角点特征数、角点特征匹配数、角点特征正确匹配数、角点特征匹配精度、角点特征匹配精度率、图像匹配时间和图像匹配时间率共7个指标进行分析;分析结果表明:Shi-Tomasi-SURFORB算法与传统ORB算法相比,在图像角点特征匹配时间方面提升了9.46%,但在图像角点特征匹配精度方面提升了8.88%,为图像角点特征匹配提供了一种更加均衡的解决方案。
关键词:  ORB算法  Shi-Tomasi算法  BRIEF算法  SURF算法  特征匹配
DOI:
分类号:
基金项目:
An Image Corner Features Matching Method Based on Optimized ORB Algorithm
ZHU Biao1,2,3,4
1. AVIC Huadong Photoelectric Co., Ltd.,Anhui Wuhu 241002, China;2. Key Laboratory of Modern Display Technology,Anhui Wuhu 241002, China;3. National Special Display Engineering Research Center, Anhui Wuhu 241002, China;4. National Engineering Laboratory of Special Display Technology,Anhui Wuhu 241002, China
Abstract:
Aiming at the problem that the image corner features matching accuracy of the traditional ORB algorithm is not high, an image corner features matching method based on optimized ORB algorithm is proposed. Firstly, this paper uses the Shi-Tomasi algorithm to detect the image corner features, then uses the fusion algorithm of BRIEF and SURF to generate the double-descriptor sequences of the image corner features, and reduces dimension of the double-descriptor sequences by the random projection principle, finally, the optimized matching algorithm is used to match, referred to as the Shi-Tomasi-SURFORB algorithm. The simulation experiment analyzes seven indicators, including the number of corner features, the number of corner features matching, the number of correct corner features matching, the accuracy of corner features matching, the corner feature matching accuracy ratio, the image matching time, and the image matching time rate, the analysis results show that compared with the traditional ORB algorithm, the Shi-Tomasi-SURFORB algorithm improves the image corner features matching time by 9.46%, but improves the image corner features matching accuracy by 8.88%, which provides a more balanced solution for image corner features matching.
Key words:  ORB algorithm  Shi-Tomasi algorithm  BRIEF algorithm  SURF algorithm  feature matching
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752875位访客
关注微信二维码