摘要: |
分析了Barnsley M F的经典文献中递归仿射分形插值的数值模拟问题,利用Matlab与随机迭代算法,给出了递归仿射分形插值算例的随机迭代算法,得到相应分形插值曲线。递归仿射分形插值把较长的原像区间Ji′=[xl,xm]压缩映射到更短的像区间Ji=[xi-1,xi]时,有3种情况:(1) JiJi′; (2) JiJi′且Ji∩Ji′=Φ;(3) JiJi′,但是Ji∩Ji′≠Φ。根据递归仿射分形插值与分片分形插值,对以上3种情形进行了随机迭代数值模拟,给出了算法流程与详细的程序代码,这些数值分析是对分形插值理论的补充。最后,利用粒子群最优化算法给出仿射分形插值函数的盒维数最优解。 |
关键词: 递归仿射分形插值 分片仿射分形插值 随机迭代 数值模拟 盒维数 |
DOI: |
分类号: |
基金项目: |
|
Research on Box Dimension and Numerical Simulations of Recurrent (Piecewise) Affine Fractal Interpolation |
YUAN Li-guo, YU Rong-zhong, KUANG Ju-hong1,2,3
|
1.School of Mathematics and Informatics, South China Agricultural University, Guangzhou 510640,China;2.School of Science, Jiujiang University,Jiangxi Jiujiang 332005,China;3.School of Mathematics and Computational Science, Wuyi University,Guangdong Jiangmen 529020,China
|
Abstract: |
This paper analyzes the numerical simulation of recurrent affine fractal interpolation in M.F.Barnsley’s classical literature[1], Recurrent Iterated Function Systems.By using MATLAB and random iterative algorithm, the random iterative algorithm of recurrent affine fractal interpolation example is given, and the corresponding fractal interpolation curve is obtained.When the recurrent affine fractal interpolation maps the longer original image range Ji′=[xl,xm] compression to the shorter image range Ji=[xi-1,xi],there are three situations:(1)JiJi′, (2)JiJi′ and Ji∩Ji′=Φ,(3)JiJi′andJi∩Ji′≠Φ。According to the recurrent affine fractal interpolation and piecewise fractal interpolation, the random iterative numerical simulation of the above three cases is carried out, and the algorithm process and detailed program codes are given.The numerical analysis is a supplement to the fractal interpolation theory.Finally, the optimal solution of box dimension of affine fractal interpolation function is given by particle swarm optimization algorithm. |
Key words: recurrent affine fractal interpolation piecewise affine fractal interpolation random iteration numerical simulation box dimension |