引用本文:汤超,周孟然.基于学习向量量化在蜂蜜LIF光谱图像识别的应用(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2021,38(3):19-25
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 660次   下载 24 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于学习向量量化在蜂蜜LIF光谱图像识别的应用
汤超,周孟然
安徽理工大学 电气与信息工程信息学院,安徽 淮南 232001
摘要:
针对目前蜂蜜检测技术存在的无法快速、准确识别的问题,提出了一种基于激光诱导荧光(LIF)与学习向量量化(LVQ)有机结合对蜂蜜进行快速识别的方法;采用LIF获取蜂蜜的光谱数据,利用主成分分析(PCA)对光谱数据处理,将处理后的数据输入已建立好LVQ分类学习模型中进行分类识别;实验将挑选4种不同的蜂蜜,每种采集50组蜂蜜光谱数据,随机抽取120组蜂蜜光谱数据用于LVQ神经网络模型的训练,其余80组蜂蜜数据将输入训练好的LVQ模型进行测试;LVQ分类学习模型用于蜂蜜分类鉴定需要的时间为0.8 s,LVQ分类学习模型用于蜂蜜分类鉴定的准确率达到99.45%;实验结果表明:将基于LIF与LVQ有机结合,可以满足蜂蜜快速、准确识别的要求。
关键词:  LVQ神经网络算法  激光诱导荧光技术  主成分分析法  数据处理  蜂蜜识别
DOI:
分类号:
基金项目:
Application of Learning Vector Quantization to Honey LIF Spectral Image Recognition
TANG Chao,ZHOU Meng-ran
School of Electrical and Information Engineering, Anhui University of Science and Technology, Anhui Huainan 232001,China
Abstract:
Aiming at the problem that the current honey detection technology cannot identify the honey quickly and accurately, a method based on the organic combination of laser-induced fluorescence (LIF) and learning vector quantification (LVQ) to quickly identify honey is proposed. The author uses LIF to obtain the spectral data of honey, uses principal component analysis (PCA) to process the spectral data, and inputs the processed data into the established LVQ classification learning model for classification and recognition. The experiment selects 4 different types of honey, each collects 50 groups of honey spectrum data, 120 groups of honey spectrum data are randomly selected for the training of the LVQ neural network model for 4 types of honey, and the remaining 80 groups of honey data are input for training in the trained LVQ model. In this experiment, the time required for the LVQ classification learning model for honey classification and identification is 0.8s, and the accuracy of the LVQ classification learning model for honey classification and identification reaches 99.45%. The experimental results show that the organic combination of LIF and LVQ can meet the requirements of rapid and accurate identification of honey.
Key words:  LVQ neural network algorithm  laser induced fluorescence technology  principal component analysis  data processing  honey identification
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752836位访客
关注微信二维码