吕康, 黄振友.球带上LAPLACE算子第一特征值的一些性质[J].重庆工商大学学报(自然科学版),2021,38(2):35-39
LU Kang,HUANG Zhen-you.Some Properties of the First Eigenvalue of Laplace Operator on a Spherical Band[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2021,38(2):35-39
球带上LAPLACE算子第一特征值的一些性质
Some Properties of the First Eigenvalue of Laplace Operator on a Spherical Band
  
DOI:
中文关键词:  Sturm-Liouville方程  Laplace算子  第一特征值
英文关键词:Sturm Liouville equation  Laplace operator  first eigenvalue
基金项目:
作者单位
吕康, 黄振友 南京理工大学 理学院南京 210094 
摘要点击次数: 13
全文下载次数: 9
中文摘要:
      Laplace算子特征值的研究在物理上有着重要的应用,它与粒子在力场中运动时所具有的能级有密切关系,根据最大-最小原理,可以对特征值进行理论上的表示;针对三维欧式空间单位球的球带上具有Robin型边条件的Laplace算子的特征值问题,先利用Courant节点域定理和最大-最小原理,求出了第一特征值的理论表示; 然后利用此表示,证明了球带在关于赤道对称时第一特征值最大(球带面积固定); 且若球带的面积小于等于2π,有当球带向赤道靠近时,第一特征值会严格增加的结果。
英文摘要:
      The researches of the eigenvalue problems of Laplace operator have many applications to physics,they relate to the levels of power belonging to the particles when particles across certain fields.By Maximum Minimum Principle,we can formulate the eigenvalues theoretically.Based on the eigenvalue problem of Laplace operator on a spherical band in three dimensional space with Robin boundary conditions,we formulated the first eigenvalue by virtue of Courant nodal domain theorem and Maximum Minimum Principle,then by this formulation,we proved that the first eigenvalue would be maximum when the band is symmetric about the equator (the area of the band is constant),also,if the area of the band is smaller than or equals to 2π,then the first eigenvalue would monotonously increase when the band moves to the equator.
查看全文  查看/发表评论  下载PDF阅读器
关闭
重庆工商大学学报自然科学版 版权所有
地址:中国 重庆市 南岸区学府大道19号,重庆工商大学学报编辑部 邮编:400067
电话:023-62769495 传真:
您是第2427588位访客
关注微信二维码