华勇,王双园,白国振,李炳初.基于惯性权值非线性递减的改进粒子群算法[J].重庆工商大学学报(自然科学版),2021,38(2):1-9
HUA-Yong,WANG- Shuang-yuan,BAI Guo-zhen,LI Bing-chu.An Improved Particle Swarm Optimization Algorithm Based on Nonlinear Decreasing Inertial Weights[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2021,38(2):1-9
基于惯性权值非线性递减的改进粒子群算法
An Improved Particle Swarm Optimization Algorithm Based on Nonlinear Decreasing Inertial Weights
  
DOI:
中文关键词:  粒子群优化算法  惯性权值  自然选择  最大速度非线性递减
英文关键词:particle swarm optimization algorithm  inertia weight  natural selection  maximum velocity nonlinear degression
基金项目:
作者单位
华勇,王双园,白国振,李炳初 上海理工大学 机械工程学院上海 200093 
摘要点击次数: 200
全文下载次数: 232
中文摘要:
      针对粒子群优化算法中出现的收敛早熟和不收敛的问题,提出了一种基于自然选择和惯性权值非线性递减的改进粒子群算法,在算法迭代过程中,粒子边界速度采用最大速度非线性递减变化策略来限制,惯性权值非线性递减变化用于平衡种群粒子前期全局搜索与后期局部寻优的能力;为使种群在进化过程中保持多样性,在标准粒子群算法中引用二阶振荡策略使种群在进化过程中始终保持着多样性;在此基础上,进一步地将遗传算法中的选择机理与粒子群算法结合起来用于提高算法的适用性能;所提出的算法经过多个基准测试函数的模拟实验验证,并与其他已有算法进行了对比;实验结果表明:算法在搜索精度与寻优能力上有更明显的优势,尤其是在多维、多峰等复杂非线性优化问题时,所提算法具有很强的竞争力。
英文摘要:
      An improved Particle Swarm Optimization (PSO) algorithm based on natural selection and nonlinear decreasing inertial weights is proposed to solve the problem of premature convergence and non convergence in PSO.In the process of algorithm iteration,the particle boundary velocity is limited by the nonlinear decreasing strategy of maximum velocity,and the nonlinear decreasing of inertia weight is used to balance the global search ability in the early stage and local optimization ability in the later stage.In order to keep the diversity of the population in the evolutionary process,the second order oscillation strategy is used in the standard particle swarm optimization to keep the diversity of the population in the evolutionary process.On this basis,the selection mechanism of genetic algorithm and particle swarm optimization are combined to improve the applicability of the algorithm.The proposed algorithm is verified by several benchmark functions and compared with other existing algorithms.Experimental results illustrated that this algorithm has more obvious advantages in search accuracy and optimization ability,especially in complex nonlinear optimization problems such as multi dimensional and multi peak optimization,the proposed algorithm has a strong competitiveness.
查看全文  查看/发表评论  下载PDF阅读器
关闭
重庆工商大学学报自然科学版 版权所有
地址:中国 重庆市 南岸区学府大道19号,重庆工商大学学报编辑部 邮编:400067
电话:023-62769495 传真:
您是第2528816位访客
关注微信二维码