引用本文:郭畅.基于类别不平衡的企业信用风险违约测度探索——以制造业上市公司为例(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2021,38(1):113-119
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 880次   下载 10 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于类别不平衡的企业信用风险违约测度探索——以制造业上市公司为例
郭畅
安徽大学 经济学院,合肥 230601
摘要:
针对所获取的类别不平衡的深沪A股制造业上市公司财务数据,为了预测制造业上市公司信用违约情况,提出基于欠采样改进的Lasso-Logistic模型;首先通过计算WOE和IV值,剔除风险识别能力和稳定性较差的变量,接着从“数据”层面对现有的Lasso-Logistic模型进行批量欠采样处理,最后结合“算法”层面对Lasso-Logistic子模型的预测概率进行简单平均集成来研究模型的改进效果;结果表明,从模型整体效果的测度指标AUC值和区分度指标KS值来看,基于欠采样改进的带有变量筛选能力的Batch-US-LLR模型能有效提升企业信用风险违约测度的效果,对完善企业风险预警机制,提升违约风险识别能力具有可行性和有效性。
关键词:  信用风险  类别不平衡  Lasso-Logistic  Batch-US-LLR  集成
DOI:
分类号:
基金项目:
Exploration on the Measurement of Enterprise Credit Risk Default Based on Class Imbalance:Take Listed Manufacturing Companies as an Example
GUO Chang
School of Economics, Anhui University, Anhui Hefei 230601, China
Abstract:
In view of financial data obtained from Shanghai-Shenzhen A share listed companies of manufacturing industry with class imbalance, in order to predict the credit default of the listed companies of manufacturing industry, Lasso-Logistic model based on under-sampling improvement is proposed. Firstly, by calculating WOE and IV values, the variables with poor risk identification ability and poor stability are eliminated, then, from "data" level, the existing Lasso-Logistic model is processed for batch under-sampling, finally, the improved effect of the model is studied by simply mean integration of the prediction probability of Lasso-Logistic sub model based on "algorithm" level. Results show that from the perspective of the model holistic effect measurement indicator AUC value and distinguishing degree indicator KS value, Batch-US-LLR model with variables screening ability based on under-sampling improvement can effectively improve the effect of enterprise credit risk default measurement and have the feasibility and validity for perfecting early-warning mechanism for enterprise risk and promoting default risk identification ability.
Key words:  credit risk  class imbalance  Lasso-Logistic  Batch-US-LLR  integration
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752593位访客
关注微信二维码
重庆工商大学学报(自然科学版)
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载  
分享到: 微信 更多
摘要:
关键词:  
DOI:
分类号:
基金项目:
Abstract:
Key words:  
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752840位访客
关注微信二维码