张俊芳, 吴澎, 周礼刚, 肖箭, 薛明香.Pythagorean犹豫模糊熵及其多属性群决策方法[J].重庆工商大学学报(自然科学版),2020,37(6):62-70
ZHANG Jun-fang, WU Peng, ZHOU Li-gang, XIAO Jian, XUE Ming-xiang.An Approach to Multiple Attribute Group Decision Making Based on the Pythagorean Hesitant Fuzzy Entropy[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2020,37(6):62-70
Pythagorean犹豫模糊熵及其多属性群决策方法
An Approach to Multiple Attribute Group Decision Making Based on the Pythagorean Hesitant Fuzzy Entropy
  
DOI:
中文关键词:  多属性群决策  Pythagorean犹豫模糊熵  属性权重  最小公倍数扩充方法  TOPSIS
英文关键词:multi attribute group decision making  Pythagorean hesitant fuzzy entropy  attribute weight  least common multiple expansion principle  TOPSIS
基金项目:
作者单位
张俊芳, 吴澎, 周礼刚, 肖箭, 薛明香 安徽大学 数学科学学院,合肥 230601 
摘要点击次数: 11
全文下载次数: 7
中文摘要:
      针对模糊信息下的群决策问题,提出了一种基于Pythagorean犹豫模糊熵的多属性群决策方法;给出了Pythagorean犹豫模糊熵的公理化定义及计算公式;为克服传统Pythagorean犹豫模糊集规范化方法导致原始决策信息流失的不足,完善了基于Pythagorean犹豫模糊环境下的最小公倍数扩充方法,方法能有效地保持原始决策信息;又以Pythagorean犹豫模糊熵作为决策信息差异程度的度量,给出属性权重完全未知或部分已知情况下权重的确定方法,并定义了基于最小公倍数的Pythagorean犹豫模糊距离测度和Pythagorean犹豫模糊熵测度;构造了一种基于Pythagorean犹豫模糊熵的TOPSIS方法,并通过精准扶贫补贴项目案例说明了方法的可行性和有效性.
英文摘要:
      For the decision making problems with vague information, this paper presents a multiple attribute group decision making approach based on Pythagorean hesitant fuzzy entropy.Firstly, the axiomatic definition and calculation formula of Pythagorean hesitant fuzzy entropy are proposed. Classical normalization method may cause the loss of original information, in order to overcome the shortcoming, a least common multiple extended method is completed to normalize the Pythagorean hesitant fuzzy sets. This expansion method can effectively keep the original information. Then, taking Pythagorean hesitant fuzzy entropy as the difference degree of decision information, a multi attribute group decision making method is given to determine the weight when the attribute weight is completely unknown or partially known. Meanwhile, the distance and entropy measures of Pythagorean hesitant fuzzy numbers are put forward. Finally, an approach of TOPSIS based on Pythagorean hesitant fuzzy entropy is developed. At the same time, a numerical example of precision poverty alleviation project is provided to illustrate the feasibility and effectiveness of the proposed method.
查看全文  查看/发表评论  下载PDF阅读器
关闭
重庆工商大学学报自然科学版 版权所有
地址:中国 重庆市 南岸区学府大道19号,重庆工商大学学报编辑部 邮编:400067
电话:023-62769495 传真:
您是第2161595位访客
关注微信二维码