引用本文: | 高俊岭, 张义哲.基于PSO RBF神经网络的锂电池SOC估算(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2020,37(2):37-41 |
| CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435 |
|
|
|
本文已被:浏览 790次 下载 134次 |
 码上扫一扫! |
|
基于PSO RBF神经网络的锂电池SOC估算 |
高俊岭, 张义哲
|
安徽理工大学 电气与信息工程学院,安徽 淮南 232000
|
|
摘要: |
针对电动汽车锂电池荷电状态(State Of Charge,SOC)的精准估算,提出一种优化的径向基(Radial Basis Function,RBF)神经网络算法;通过粒子群(Particle Swarm Optimization,PSO)算法优化RBF神经网络的参数及结构,确定RBF神经网络中的基函数的宽度以及中心;根据锂电池的充、放电机理,将SOC的影响因子电压(U)、电流(I)、内阻(R)、温度(T)作为输入向量,在 Matlab中进行仿真实验;实验表明方法能够实现准确、快速、便捷的锂电池的SOC估算,其预测结果和实际测量结果的误差在4%以下,符合SOC预测误差5%的技术指标要求,对于电动汽车锂电池SOC的估算有着一定的实际应用意义。 |
关键词: 锂电池 SOC RBF PSO |
DOI: |
分类号: |
基金项目: |
|
SOC Estimation of Lithium Battery Based on PSO RBF Neural Network |
GAO Jun-ling,ZHANG Yi-zhe
|
School of Electrical and Information Engineering,Anhui University of Technology,Anhui Huainan 232000,China
|
Abstract: |
An optimized Radial Basis Function (RBF) neural network algorithm was presented to accurately estimate the State Of Charge (SOC) of lithium batteries in electric vehicles. The parameters and structure of RBF neural network are optimized by Particle Swarm Optimization (PSO) algorithm, and the width and center of basis function in RBF neural network are determined. According to the charging and discharging mechanism of lithium batteries, voltage (U), current (I), internal resistance (R) and temperature (T) of the influence factors of SOC are taken as input vectors to conduct simulation experiments in Matlab. Experiments show that this method can achieve accurate, fast and convenient SOC estimation of lithium batteries. The error between prediction results and actual measurement results is less than 4%, which meets the technical index requirement of SOC prediction error of 5%.It has certain practical application significance for the estimation of lithium batteries SOC of electric vehicles. |
Key words: lithium battery SOC RBF PSO |
|