王雪丽, 李昕.基于相关滤波和卷积神经网络的目标跟踪算法[J].重庆工商大学学报(自然科学版),2020,37(1):19-24
基于相关滤波和卷积神经网络的目标跟踪算法
Target Tracking Algorithm Based on Correlated Filters and Convolutional Neural Network
  
DOI:
中文关键词:  相关滤波  卷积神经网络  目标跟踪  傅里叶
英文关键词:correlated filter  convolutional neural network  target tracking  Fourier
基金项目:
作者单位
王雪丽, 李昕 安徽理工大学 电气与信息工程学院安徽 淮南 232001 
摘要点击次数: 53
全文下载次数: 30
中文摘要:
      在目标跟踪系统中,获得目标的良好表征是确定目标跟踪性能的关键,因此提出一种基于相关滤波和卷积神经网络的目标跟踪算法;该算法首先在各视频场景内预先选定可清晰区分目标外观的参考区域块用以构造训练样本,并构建了两路不完全对称但权值共享的卷积神经网络;该卷积神经网络使得参考区域外目标的输出特征尽可能与参考区域内目标的输出特征相似,以便于获得参考区域内目标的良好表征,并在其中一路加入了相关滤波模块,实现了卷积网络与相关滤波的结合;实验结果验证了该算法的可行性。
英文摘要:
      In target tracking system, the key to obtaining good characterization is to determine target tracking performance, therefore, this paper proposes a target tracking algorithm about the correlated filters and convolutional neural networks. This algorithm firstly pre-selects reference blocks which can distinguish the target appearance in each video scene to construct the training samples and then build the two-way convolutional neural network which is not completely symmetric and which shares the weights. This convolutional neural network makes the target output characteristics outside the reference area as similar as possible to the target output characteristics in the reference area so as to get good characterization of the target in the reference area. The correlated filter module is added into a way to realize the combination of convolutional network and the correlated filter. Experimental results verified the feasibility of the algorithm.
查看全文  查看/发表评论  下载PDF阅读器
关闭
重庆工商大学学报自然科学版 版权所有
地址:中国 重庆市 南岸区学府大道19号,重庆工商大学学报编辑部 邮编:400067
电话:023-62769495 传真:
您是第1684005位访客
关注微信二维码