引用本文:秦华锋, 刘霞.基于稀疏自编码的手指静脉图像分割(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2019,36(4):1-8
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1656次   下载 209 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于稀疏自编码的手指静脉图像分割
秦华锋, 刘霞1,2
1.重庆工商大学 计算机科学与信息工程学院,重庆 400067;2.重庆工商大学 智能制造服务国际科技合作基地,重庆 400067
摘要:
针对获取的手指静脉图像不仅包含静脉特征,而且包含噪声和不规则阴影,从而增加了特征提取难度的问题,提出了一种基于稀疏自编码的手指静脉图像分割算法;首先采用传统分割算法对原始灰度图像进行分割,得到一副二值图像(背景像素值为0,静脉像素值为1);然后,以该灰度图像的每个像素点为中心,对其进行图像分块,并将二值图像中对应于中心点的值(0或者1)作为该块的标签,建立训练集合;最后,将训练样本(分块图像和标签)输入到自编码器和神经网络中进行训练,再用训练好的模型对测试图像进行分割;实验结果表明,相比传统的算法,提出的手指静脉分割算法能够有效地对静脉进行分割,提高手指静脉认证系统的认证精度。
关键词:  手指静脉  图像分割  稀疏自编码器
DOI:
分类号:
基金项目:
Finger Vein Image Segmentation Based on Sparse Auto-Encoder
QIN Hua-feng, LIU Xia
Abstract:
According to that the acquired finger-vein images contain not only vein features, but also noise and irregular shadows, increasing the difficulty of feature extraction, this paper proposes a novel method for finger-vein image segmentation based on sparse self-encoding. Firstly, the original grayscale image is segmented by the traditional segmentation algorithm to obtain a binary image (the background pixel value is 0 and the vein pixel value is 1). Then, we take each pixel as center point to generate patch from original grayscale image and the value (0 or 1) of the corresponding point in the binary image is used as its label.A training set is built based on generated patches and labels. Finally, the patch images and labels are input into the auto-encoder and neural network for training, and the trained models are used to segment the test images. The experimental results show that compared with the traditional algorithm, the proposed finger vein segmentation algorithm can effectively segment the vein and improve the authentication accuracy of the finger vein authentication system.
Key words:  finger vein  image segmentation  sparse auto-encoder
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第5260224位访客
关注微信二维码