周俊屹, 郑霜.鲁棒多目标优化问题的最优性和对偶性[J].重庆工商大学学报(自然科学版),2019,36(1):49-53
鲁棒多目标优化问题的最优性和对偶性
Optimality and Duality for Robust Multiobjective Optimization Problems
  
DOI:
中文关键词:  鲁棒多目标优化  最优性条件  对偶性  极限次微分  (严格)广义伪凸
英文关键词:robust multiobjective optimization  optimality condition  duality  limiting subdifferential  (strictly) generalized pseudoconvex.
基金项目:
作者单位
周俊屹, 郑霜 重庆师范大学 数学科学学院重庆 401331 
摘要点击次数: 364
全文下载次数: 485
中文摘要:
      针对非光滑、非凸实值函数的鲁棒多目标优化问题,建立鲁棒(弱)有效解的充分优化条件,并探索了对偶(鲁棒)多目标问题的强弱对偶关系;利用复合函数的极限次微分,凸性推广至(严格)广义伪凸的条件下仍能得到优化问题的最优性条件,并进一步通过对偶问题建立强弱鲁棒对偶性;最后在(严格)广义伪凸的条件之下,得到3个定理并加以证明。
英文摘要:
      For the robust multiobjective optimization problem involving nonsmooth/nonconvex real-valued functions,the sufficient optimality conditions for robust (weakly) Pareto solutions are established. In addition,weak and strong duality relations of the dual multiobjective problem are explored. Using the limiting subdifferential of the compound function,the optimality condition of the optimization problem can still be obtained under the condition of (strictly) generalized pseudoconvex,and the strong and werk duality can be established by the dual problem. Finally,under the condition of (strictly) generalized pseudoconvex,three theorems are obtained and proved.
查看全文  查看/发表评论  下载PDF阅读器
关闭
重庆工商大学学报自然科学版 版权所有
地址:中国 重庆市 南岸区学府大道19号,重庆工商大学学报编辑部 邮编:400067
电话:023-62769495 传真:
您是第1682233位访客
关注微信二维码