引用本文:王灿, 黄俊, 秦锋.稀疏链式多标记分类器(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2018,35(5):7-16
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1007次   下载 173 本文二维码信息
码上扫一扫!
分享到: 微信 更多
稀疏链式多标记分类器
王灿, 黄俊, 秦锋1
安徽工业大学 计算机科学与技术学院 ,安徽 马鞍山 243000
摘要:
高阶多标记学习算法能够挖掘所有类别标记之间的关系或标记子集的关系,但在处理错误传播和冗余或错误的类别依赖关系这两个问题上存在弊端。针对此类问题,在链式分类器的基础上,提出稀疏链式多标记学习算法(Sparse Classifier Chains,SCC);为了验证所提出算法的有效性,将其与5种多标记学习算法进行对比,选取8个评价指标来评估算法的性能,在12个标准数据集上进行了实验验证,并利用秩和检验方法来分析所有对比算法之间的相对性能;实验结果表明:稀疏链式多标记学习算法优于所有对比算法,显著优于部分算法,并具有较强的泛化性能。
关键词:  多标记学习  稀疏链式分类器  高阶标记相关性
DOI:
分类号:
基金项目:
arse Classifier Chains for Multi Label Classification.
WANG Can, HUANG Jun, QIN Feng
Abstract:
Higher order multi label learning algorithm can mine the relationships or subsets of all class labels, however, it has some drawbacks in dealing with the problems of error propagation and redundant or erroneous class dependencies. For such problems, a new multi label classifier SCC, i.e., Sparse Classifier Chains, was proposed based on classier chains by introducing sparse learning. In order to verify the effectiveness of the proposed algorithm, we compared this with other 5 kinds of multi label learning algorithms and selected 8 evaluation indexes to evaluate the performance of them. The experimental verification which was carried out on 12 standard data set lastly analyzed by using the rank sum test method to compare the relative performance . The experimental results showed that SCC was superior to all the contrast algorithms, significantly superior to some algorithms; furthermore, it had a strong generalization performance.
Key words:  multi label learning  sparse classifier chains  high order label correlation
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752783位访客
关注微信二维码