摘要: |
为了获得Fujiwara〖KG-*2〗-〖KG-*6〗Hermite惯性准则和Routh〖KG-*2〗-〖KG-*6〗Hurwitz惯性准则在Bernstein多项式基下的表现形式,利用经典Bezout矩阵与Bernstein Bezout矩阵之间的转换关系这一代数方法,给出了Bernstein Bezout矩阵在多项式惯性和稳定性理论方面的应用研究;所得结果可以看做是对应的经典惯性准则在Bernstein多项式基下的推广. |
关键词: Bernstein多项式基 Bernstein Bezout矩阵 Fujiwara〖KG-*2〗-〖KG-*6〗Hermite准则 Routh〖KG-*2〗-〖KG-*6〗Hurwitz准则 |
DOI: |
分类号: |
基金项目: |
|
Bernstein Bezout Matrix and Polynomial Inertia |
LI Shan, WU Hua zhang
|
Abstract: |
In order to study the theory of Fujiwara Hermite and Routh Hurwitz criteria under the Bernstein polynomials basis,the authors use the algebraic method of the transformation relation between the classical Bezout matrix and Bernstein Bezout matrix to give some investigations on the polynomial inertia and stability theory in terms of the Bernstein Bezout matrix.The results obtained can be viewed as the generalizations of the corresponding classical Fujiwara Hermite and Routh Hurwitz criteria to the cases under the Bernstein polynomials basis. |
Key words: Bernstein polynomials basis Bernstein Bezout matrix Fujiwara Hermite criteria Routh Hurwitz criteria |