摘要: |
不定方程整数解的问题是数论方面的一个重要分支,利用代数数论和同余的方法讨论不定方程x^2+64=4y^n(x,y∈Z),当n=7,11时整数解的问题,并证明了不定方程x^2+64=4y^n(n=7,11)无整数解. |
关键词: 不定方程 代数数论 整数解 |
DOI: |
分类号: |
基金项目: |
|
The Solution on Diophantine Equation x^2+64=4y^n(n=7,11) |
SHANG Xu
|
Abstract: |
The integer solution to Diophantine equation is an important branch of the number theory, the problem of integer solution to the Diophantine equation x^2+64=4y^n(x,y∈Z) is discussed by using the methods of algebraic number theory and congruence when n=7,11. and that the Diophantine equation x^2+64=4y^n(n=7,11) has no integer solution is proved. |
Key words: Diophantine equation algebraic number theory integer solution |