引用本文:郭益敏,杨炜明.基于Pair Copula函数的空间预测模型及其应用(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2017,34(3):17-20
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1247次   下载 542 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于Pair Copula函数的空间预测模型及其应用
郭益敏,杨炜明1
重庆工商大学 数学与统计学院,重庆 400067
摘要:
对于空间数据的插值预测,大多采用传统的空间插值方法如反距离加权插值法和克里金插值法,这2种方法在边缘分布或存在异常值的情况下会导致预测精度相对较低;采用基于Copula理论的方法克服了这一问题。通过Pair Copula函数描述了空间相依结构并利用MCMC方法(贝叶斯估计法)估计参数,讨论基于空间数据对未观测位置相关数据进行了空间插值预测;结合重庆市雾霾数据对该方法与反距离加权插值法、普通克里金和泛克里金插值法进行比较,结果发现基于Pair Copula函数的空间预测模型具有更高的精度。
关键词:  Pair Copula函数  空间相依结构  空间预测
DOI:
分类号:
基金项目:
Spatial Prediction Model and Its Application Based on Pair Copula Functions
GUO Yi min, YANG Wei ming
Abstract:
The interpolation prediction of spatial data usually uses traditional spatial interpolation methods such as inverse distance weighted interpolation and Kriging interpolation, whose prediction accuracy is relatively low under the impact of marginal distribution or outlier, as a result, the method based on copula overcomes the problem. Spatial correlation structures are described by Pair Copula function and the parameters are estimated, and spatial interpolation prediction method is discussed in corresponding values of none observation stations based on spatial data. This model is compared with inverse distance weighted interpolation, original Kriging interpolation and universal Kriging interpolation based on the data of fog in Chongqing, and the results show that the spatial prediction model based on Pair Copula function posses the higher accuracy.
Key words:  Pair Copula function  spatial correlation structure  spatial prediction
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752806位访客
关注微信二维码