引用本文:程鹏.一种解可分凸优化问题的外梯度并行分裂算法(J/M/D/N,J:杂志,M:书,D:论文,N:报纸).期刊名称,2017,34(1):34-40
CHEN X. Adap tive slidingmode contr ol for discrete2ti me multi2inputmulti2 out put systems[ J ]. Aut omatica, 2006, 42(6): 4272-435
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 948次   下载 765 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一种解可分凸优化问题的外梯度并行分裂算法
程鹏1
重庆师范大学 数学科学学院, 重庆 401331
摘要:
并行分裂法是求解两个可分离变量线性约束凸优化问题的重要方法,该方法通常要求两个凸函数有邻近映射,对于其中一个函数具有邻近映射,另一个函数光滑但不具有邻近映射的情况,此处提出了一种基于并行分裂的外梯度算法,并在假设光滑函数梯度Lipschitz连续条件下证明了该算法的O(1/ε)迭代复杂度。
关键词:  凸优化  可分离结构  增广拉格朗日法  并行分裂法
DOI:
分类号:
基金项目:
An Extragradient Parallel Split Algorithm for Solving Separable Convex Optimization Problem
CHENG Peng
Abstract:
Parallel splitting method is an important method for solving the convex optimization problem with two separable variables.The methods usually requires that the two convex functions have relatively easy proximal mappings, for the structure that only one of the two functions has easy proximal mapping and the other one is smoothly convex but does not have an easy proximal mapping.We propose in this paper an extragradient algorithm based on parallel splitting.Under the assumption that the smooth function has a Lipschitz continuous gradient condition, we prove the O(1/ε)iteration complexity of the method.
Key words:  convex optimization  separable structure  augmented Lagrangian method  parallel splitting method
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4751071位访客
关注微信二维码
重庆工商大学学报(自然科学版)
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载  
分享到: 微信 更多
摘要:
关键词:  
DOI:
分类号:
基金项目:
Abstract:
Key words:  
重庆工商大学学报(自然科学版) 版权所有
地址:中国 重庆市 南岸区学府大道19号 重庆工商大学学术期刊社 邮编:400067
电话:023-62769495 传真:
您是第4752772位访客
关注微信二维码